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ABSTRACT
The website fingerprinting (or inter-domain WSF ), enhanced by var-
ious machine learning techniques, has shown its power to identify
websites a user has visited. To our best knowledge, a finer-grained
problem of web page fingerprinting (or intra-domain WPF ) has not
been systematically studied by our research community. The WPF
attackers, such as government agencies who enforce Internet cen-
sorship, are keen to identify the particular web pages (e.g., a political
dissident’s social media page) the target user has visited.

In this work, we investigate the intra-domain WPF against social
media websites. Our study involves the realistic on-path passive
attack scenario. We reveal that delivering large-size data such as
images and videos via Content Delivery Networks (CDNs), which
is a common practice among social media websites, makes intra-
domain WPF highly feasible. The occurring network traffic while
the browser is rendering a social media page exhibits temporal and
volumetric patterns that are sufficiently recognizable by machine
learning algorithms. We characterize such patterns as CDN bursts,
and use features extracted from them to empower classification
algorithms to achieve a high classification accuracy (96%) and a low
false positive rate (0.02%). To alleviate the threat of intra-domain
WPF, we also propose and evaluate countermeasures such as devi-
ating the packet interval time and inserting dummy requests.

CCS CONCEPTS
• Web fingerprinting → Intra-domain web fingerprinting; • So-
cial media sites; • web browsing privacy;
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1 INTRODUCTION
Deploying encrypted channels has become a security principle for
Internet communication. As reported by WatchGuard [52], more
than 80% of the 100,000 top-visited websites have been under the
protection of HTTPS. Despite providing sufficient confidentiality,
the encrypted channels still inadvertently expose the metadata,
such as endpoints’ IP addresses, packet sizes and traffic direction,
to the network attacker. These metadata have been fully or par-
tially abused by fingerprinting attacks for identifying websites
that a user has just visited [9, 17–20, 25, 33, 38, 50, 51, 54]. The
attacks aim to distinguish the web domains, and thus we refer to
them as inter-domain website fingerprinting (or inter-domain WSF ).
The state-of-the-art inter-domain WSF has achieved a significantly
high accuracy (> 95%). Their capacity, however, may be restricted
when fingerprinting pages out of the same social media website
which contains millions of theme-wise similar (e.g., layout, style
and HTML elements) but content-wise distinct pages.

Even though the contents shared on the social media pages
are generally considered less privacy-sensitive, the accumulative
behaviors of browsing them encompass indicative information re-
garding a user, such as his/her political orientations and religious
beliefs [14]. Concerns on such risks have been on the rise due to
the increasing emphasis on censorship and surveillance worldwide
nowadays. As shown by [22], the global Internet censorship is
undergoing a shift from the website filtering to the content-wise
surveillance, particularly amid the increasingly stringent scrutiny
on social media websites after their involvement in misinformation
spreading related to a series of terrorist attacks in New Zealand [47],
Sri Lanka [45] and Myanmar [12].

In this work, we conduct a systematic study on fingerprinting
the web pages within social media websites. We refer to it as intra-
domain web page fingerprinting (or intra-domain WPF ). Our study
assumes an on-path passive attacker that eavesdrops on the net-
work, e.g., a malicious ISP or an honest-but-curious gateway. The
attacker merely utilizes the metadata of the traffic1 without break-
ing the encryption, and strives to find features to differentiate web
pages that are from the same web domain. To make our study re-
alistic, we consider a slightly different threat model from those
in the inter-domain WSF literature—the intra-domain WPF is not
designated to be against the anonymity networks such as VPN or
Onion Router (Tor) that incorporate a proxy or a collection of relays
to hide IP addresses and routes (and also part of metadata such as

1The traffic in this paper refers to encrypted traffic unless stated otherwise.
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the packet sizes in Tor). As is revealed by the latest statistics, only
7% of Internet users use VPNs frequently [15]; the Tor traffic (400
Gbit/s bandwidth [37]) accounts for merely 0.06% of the total global
Internet traffic (77,800 GB/s actual traffic [1]). Hence, our applied
threat model may retain sufficient fidelity for studies on the scale
of nation-wide network or even Internet.

The intra-domain WPF is more challenging than it appears, al-
though it may be considered as a trivial task due to the success of the
inter-domain WSF and the availability of advanced learning tech-
niques. In a typical social media website, almost all its web pages
(such as Facebook user profile pages) are generated from the same
template, such that similar traffic patterns are exhibited. Conse-
quently, those previously distinguishable features that classification
algorithms rely on are blurred out. Some “higher-definition” finger-
prints capable of differentiating among such similar web pages are
demanded. The used features should be highly individualized and
robust in characterizing the subtle differences among pages.

To identify such fingerprints, we first examine the traffic of
social media websites (detailed in Section 2.3). Characterized by
their so-called social-content-centric feature, social media websites
experience enormous traffic from the large-size contents such as
photos and videos their users upload/download. For example, in
Facebook, 350 million photos are uploaded and 8 billion videos are
viewed each day [3]. To facilitate efficient delivery of these large-
size contents, social media websites tend to host them separately,
typically with CDN, from the web servers which host only small
objects like HTML and CSS files. We find that when a browser
renders a social web page, the traffic between the browser and the
CDN may exhibit patterns that can uniquely characterize the page.

Based on this finding, we propose a fingerprint named CDN
bursts, by adapting the notion of the traffic bursts that are exten-
sively used in the inter-domain WSF literature [28, 49]. A CDN
burst is defined as an aggregation of several temporally adjacent
network packets originated from a certain CDN server (identified
by its unique IP address); a sequence of bursts further character-
ize a web page. From the perspective of the application layer, the
personalized social media contents diversify the Document Object
Model (DOM) trees among pages. Since the browser’s rendering
process in essence is to segment network stream into objects (e.g.,
images and videos), the DOM structure would then “shape” this
semantics-aware segmentation, and implicitly influence how the
browser fetches contents from CDN servers. As a result, the infor-
mation conveyed by CDN bursts, such as the size of a retrieved
content and the intervals of retrievals, may (partially) expose the
DOM structure. This may be further strengthened by the dynamic
or asynchronous loading features (e.g., Ajax) extensively used by
social media sites.

To further demystify the CDN bursts, we conduct a series of
in-depth studies. We design an algorithm to extract CDN bursts
incorporating both temporal and volumetric factors from the net-
work traces, and to derive a feature set for classification. Being
aware of the importance to estimate information leaked by the
features, thanks to a recent work by Li et al. [25], we also quan-
tify the mutual information between the web pages and each CDN
burst, which measures the amount of information contained in and
(possibly) leaked by the CDN burst. Our experimental evaluation
demonstrates that this amount of information is sufficient for the
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Figure 1: The intra-domain WPF attacker model

intra-domainWPF to fingerprint social media pages. Finally, we pro-
pose countermeasures by obscuring the temporal and volumetric
characteristics that the attacker utilizes to construct CDN bursts.
Contributions. Our study of fingerprinting the social media pages
is the first systematic research of its kind. We show that intra-
domain WPF, although previously considered as unachievable as
finding a needle in a haystack [32], can achieve a performance
at least as accurate as that of the state-of-the-art inter-domain
WSF. This sheds light on an underresearched domain and may
inspire more future research on the general intra-domain WPF. As
a summary, the contributions of this paper are as follows.
• A new type of web fingerprinting attack. We propose
the novel intra-domain WPF that aims to differentiate the
web pages within the same social media website, assuming
a realistic and representative attacker model.
• A novel fingerprint and its countermeasures. We pro-
pose CDN bursts as a new fingerprint to characterize social
media pages. Through the formalization of CDN bursts and
quantification of information leakage, we demonstrate their
feasibility and effectiveness in intra-domain fingerprinting.
We also propose and evaluate the possible countermeasures.
• A comprehensive evaluation and practical results.We
analyze the performance of the proposed intra-domain WPF
attack on four top-visited social media websites, including
Facebook, YouTube, Twitter and Instagram. We follow the
data collection approaches used by website fingerprinting
literature [32, 49] to acquire a representative dataset, which
consists of over 424,000 traces from over 12,000 unique web
pages. Our dataset is released to facilitate future studies [2].

2 THE INTRA-DOMAINWPF ATTACK
Similar to the inter-domain WSF, we formalize the intra-domain
WPF as a classification problem, where the informative and distin-
guishable features play a crucial role. In this section, we study the
CDN traffic and demonstrate that CDN bursts contain distinguish-
able features for classifying traffic of social media pages.

2.1 Problem Statement and Attacker Model
The intra-domain WPF is a type of traffic analysis attack. Consider-
ing such a scenario: a social media website hosts a set of publicly
accessible web pagesW, and the victim user may visit any page in
a setV (V ⊂ W). The attacker owns a classifier C trained from a set
of pages A (A ⊂ W). Given the traffic 𝜏 generated during loading a
page 𝜔 ∈ V, the goal of the attack is to maximize the probability
Pr(C(𝜏) = 𝜄𝜔 ), where 𝜄𝜔 is the label2 of 𝜔 .

Figure 1 shows an overview of the intra-domain WPF attacker
model. Similar to prior fingerprinting studies, we assume a passive
2We treat each page as a class, so the label means its class label. For simplicity, we
abuse 𝜔 as the label of itself in the remaining of this paper. An 𝜔 ∉ A is labeled as ⊥.
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on-path attacker on the network or transport layer. The attacker can
passively collect but not intercept, modify, delay or decrypt network
packets. In reality, the possible attackers could range from compro-
mised network access points, proxies and routers, local network
administrators, Internet Service Providers (ISP), to Autonomous
Systems (AS) between the victim user and the web servers.

The attacker model in the intra-domain WPF is slightly differ-
ent from that in the inter-domain WSF. In the latter, the web do-
mains that a victim has visited are considered sensitive, while in
the intra-domain WPF, the attacker is more concerned with the
content-centric privacy. In particular, the attacker’s general interest
is whether the target victim has visited a particular page (which
includes a politician’s tweets, for example), while the visited web
domain (e.g., twitter.com) is out of interest. Therefore, the intra-
domain WPF is not aimed at VPN and Onion Router (Tor) which
are commonly used for hiding the specific services (i.e., domains).
In addition, our attacker model also excludes the web attacker who
can remotely execute code on the client side, e.g., JavaScript code
injected into a benign web page.

In website fingerprinting studies, it is common to evaluate the
attacks against both closed-world and open-world models [8, 49].
We define them using the relation between A and V. The case of
A = V corresponds to the closed-world model, and the case of
(A ≠ V) ∧ (A∩V ≠ ∅) to the open-world model. These two models
in essence represent the extent to which the attacker is able to train
his classifier on the pages that are likely to be visited by the victim.
The ideal scenario for the attacker is to know all pages the victim
may visit, i.e., the closed-world model. This has been regarded
unrealistic [33, 38] though. Nevertheless, the closed-world model is
useful to benchmark classification and fingerprinting approaches.
We thus keep both models in our evaluation.

2.2 CDN Bursts as Classification Features
Extracting a set of consistently informative features from the net-
work traffic is the utmost important factor for a successful classifica-
tion. In general, the size, temporal distribution and source/destination
are the major characteristics of the packets. Therefore, we general-
ize a traffic generated while loading a social media page𝑤 as a se-
quence 𝑇 (𝑤): 𝑇 (𝑤) = ⟨(𝑝1, 𝑡1, 𝑖𝑝1), (𝑝2, 𝑡2, 𝑖𝑝2), . . . , (𝑝𝑁 , 𝑡𝑁 , 𝑖𝑝𝑁 )⟩,
where (𝑝𝑖 , 𝑡𝑖 , 𝑖𝑝𝑖 ) is a packet originated from 𝑖𝑝𝑖 with timestamp 𝑡𝑖 ,
and size 𝑝𝑖 (𝑝𝑖 > 0). We call 𝑇 (𝑤) a loading trace of web page𝑤 .

In the CDN traffic, the incoming packets are more informative
than the outgoing ones (in terms of size variation, source, etc.). We
therefore further reorganize the loading trace 𝑇 (𝑤) to group the
incoming CDN packets from 𝑖𝑝 into 𝑇 𝑖𝑛

𝑖𝑝
(𝑤):

𝑇 𝑖𝑛
𝑖𝑝
(𝑤) = ⟨(𝑝𝑖𝑛1 , 𝑡

𝑖𝑛
1 , 𝑖𝑝), . . . , (𝑝

𝑖𝑛
𝑀
, 𝑡𝑖𝑛
𝑀
, 𝑖𝑝)⟩,

where𝑀 ≤ 𝑁 . Hereafter, we use traces to indicate incoming traces.
Given a CDN trace 𝑇 𝑖𝑛

𝑖𝑝
(𝑤), a CDN burst is a segment of the

trace containing a sequence of consecutive and temporally adjacent
packets. The k-th CDN burst is defined as 𝐵𝑖𝑛

𝑘
:

𝐵𝑖𝑛
𝑘
=⟨(𝑝𝑖𝑛

𝑗
, 𝑡𝑖𝑛

𝑗
, 𝑖𝑝), (𝑝𝑖𝑛

𝑗+1, 𝑡
𝑖𝑛
𝑗+1, 𝑖𝑝), . . . , (𝑝

𝑖𝑛
𝑞 , 𝑡𝑖𝑛𝑞 , 𝑖𝑝)⟩,

where 0 < 𝑗 ≤ 𝑞 ≤ 𝑀 ; 𝑝𝑖𝑛
𝑗
, 𝑝𝑖𝑛

𝑗+1, . . . , 𝑝
𝑖𝑛
𝑞 are consecutive incoming

packets; 𝑡𝑙+1 − 𝑡𝑙 < 𝛿 for all 𝑙 ∈ [ 𝑗, 𝑞). The threshold 𝛿 which we
name as burst threshold is a parameter whose optimal value can be
fine-tuned (discussed in Section 5.3).

Based on the definitions above, we summarize the CDN burst
feature engineering as Algorithm 1. It takes as input a CDN trace
𝑇 𝑖𝑛
𝑖𝑝
(𝑤) originated from IP address 𝑖𝑝 when loading page 𝑤 , and

outputs the CDN burst feature set. Intuitively, it first aggregates
packets into bursts and then calculates the burst sizes which are
the final features written into the feature set.

Algorithm 1: CDN Burst Based Feature Engineering
Input: 𝑇 𝑖𝑛

𝑖𝑝
(𝑤)

Output: Feature Set F
Function FeatureEngineering (𝑇 𝑖𝑛

𝑖𝑝
(𝑤))

F = ∅, 𝑘 = 1, 𝐵𝑖𝑛1 = ⟨⟩
for 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (1, 𝑀) do

𝐵𝑖𝑛
𝑘
.𝑎𝑝𝑝𝑒𝑛𝑑 ((𝑝𝑖 , 𝑡𝑖 , 𝑖𝑝))

if 𝑡𝑖𝑛
𝑖+1 − 𝑡

𝑖𝑛
𝑖

< 𝛿 then
𝐵𝑖𝑛
𝑘
.𝑎𝑝𝑝𝑒𝑛𝑑 ((𝑝𝑖+1, 𝑡𝑖+1, 𝑖𝑝))

else
F.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 𝑜 𝑓 𝑎𝑙𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑖𝑛 𝐵𝑖𝑛

𝑘
)

𝑘 ← 𝑘 + 1
end
return F

end

The rationale for proposing CDN bursts is that the social media
pages may be embedded with large-size objects (e.g., images and
videos) which are typically hosted by CDN servers. Objects with
various sizes may appear in different places among pages (based on
the order that page owners upload them to the “timelines”, for ex-
ample), such that the DOM structures of these pages may vary. This
results in significant variation in the browser’s page downloading
behaviors. When an object is being downloaded, it is split into mul-
tiple packets for transmission, and these packets are likely to appear
in a batch. We observe that the time interval between such two
consecutive packets is much shorter (0.1%) than that between the
HTTPS requests to fetch two adjacent objects (~0.01𝑚𝑠 v.s. ~10𝑚𝑠),
because it takes time for the browser to parse and render the page
before sending out more HTTPS requests. In this situation, the
CDN bursts become distinguishable classification features since a
burst is essentially a “reconstruction” of an application-level object.

The burst threshold 𝛿 is a subtle factor. In an ideal scenario where
the browser sends sequential requests for the objects, any 𝛿 between
0.01𝑚𝑠 and 10𝑚𝑠 would enable the “object reconstruction”. However,
considering that modern browsers send requests in parallel (e.g., the
webworker inHTML5), it may bemore robust to reconstruct a batch
of objects into a burst. We take this strategy in our construction,
and detail the selection of 𝛿 in Section 5.3.

2.3 CDN Bursts in Real-world Scenarios
To explore the feasibility of the intra-domain WPF using CDN
bursts, we conduct an empirical study on two of the most followed
Instagram profile pages, National Geographic (ranked 14th most
followed, denoted as Ins_page_1) and Katy Perry (ranked 20th
most followed, denoted as Ins_page_2). We simulate a scenario
shown in Figure 2 where the victim user is browsing two pages
Ins_page_1 and Ins_page_2. The theme and script files which
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Figure 2: A running example

include the HTML, CSS and JavaScripts are fetched from the web
server, and the large-size image/video contents are stored by the
CDN sever (with IP address 157.240.25.63). We visit each Instagram
profile for 50 times and record the generated network traffic.

First, we visualize the traces derived from the traffic in Figure 3
(a), without applying our feature engineering algorithm.We plot the
cumulative incoming data size versus time to reflect the temporal
and volumetric features commonly used by website fingerprinting
techniques[9, 49, 50]. As is shown, the traces are almost indistin-
guishable, and significant parts are even intertwined. This situation,
in practice, would be further worsened by the network fluctuations.

We also assess the effectiveness of the cumulative volumetric fea-
tures, which are another extensively used type of features [17, 32].
We investigate the distribution of the cumulative transmitted data
volume of 30,000 collected Instagram profile pages included in one
of our datasets (further discussed in Section 3.2), and find that 95%
of those pages have the cumulative transmitted data volume in
range between 1.1 MB to 1.4 MB, as shown in Figure 3 (b). This
suggests that the classification algorithms which heavily rely on
the cumulative volumetric features might also be ineffective. Be-
sides, considering the traces are from the same web server, other
traditional statistical features [17, 49] which are stemmed from
the variances among inter-domain web servers, such as maximum
packet size and packet count per second, are likely to fail.

We further break down the traffic based on its origins. We ex-
tract the CDN traffic out of the overall network traffic (by filtering
packets from IP address 157.240.25.63) and plot it in Figure 3 (c).
As is shown, the CDN traffic exhibits consistent and distinctive
differences in burst sizes between the two pages, despite indistin-
guishable cumulative CDN traffic sizes (∼0.6 MB for both pages).
We then apply our feature engineering on all CDN traces of these
two pages. For the purpose of intuitive visualization and compari-
son, we plot the value ranges of the derived feature set in Figure 3
(d). As can be seen, each burst size varies within a relatively narrow
band, suggesting the features are robust and consistent. There is
almost no overlapping region between bursts (except a marginal
one for burst 1), indicating that the CDN bursts are distinguishable
representations, or fingerprints, of their traces.

3 DATA COLLECTION
The prerequisite for machine learning algorithms is a dataset with
abundant representative data. However, since our work is the first

one conducting the intra-domain WPF, there is not dataset that
could be directly used. Therefore, we resort to build a new setup
for data collection. During the process of data collection (presented
soon in Section 3.1), we take account of attacker’s capabilities (de-
fined in Section 2.1) to retain representativeness. We assume the
attacker can use a network sniffing tool to record metadata of the
network-layer packets, including the size of the packets, the times-
tamp of sending/receving a packet, the addresses (port and IP), etc.
Our collected datasets have been made available online [2] after
anonymization to facilitate future research.

3.1 Setup
Without losing generality, the machine configurations and loca-
tions are intentionally diversified in our data collection process. We
distribute our setup along the campuses of National University of
Singapore and the University of Queensland (denoted by A and B
respectively for simplicity), located in two continents. On Campus
A, we utilize 4OpenStack [31] Ubuntu 16.04 virtual machines hosted
by a server with 20 CPUs and 50GB of RAM in our department,
and 2 Windows 10 desktops with 8 CPU Cores and 16GB of RAM
located in a research lab. On Campus B, we utilize 3 Ubuntu 16.04
virtual machines with 1 CPU and 2 GB of RAM located in an office.
For loading the web pages, we use Firefox version 66.0.3 on Linux
machines and Chrome version 70.0.3538.77 on Windows machines.

3.2 Data Collection Methodology
Considering that social media pages contain many dynamically-
loaded contents, our data collection process has to simulate the
actual browsing activities of the users, rather than straightforwardly
sending HTTP requests without rendering pages. To this end, we
use a web testing automation tool Selenium [40] to automatically
generate page visits. Similar to other fingerprinting studies ([17, 42,
50]), the browser caches are disabled so that the captured traces
are complete; the page visits are in the sequential manner (i.e.,
single-tab) so that the collected traces are not interweaved. We
acknowledge these two settings may give the attacker advantage,
but in reality, the caches of the main-stream browsers are usually
too small (< 80 MB) to host many large-size objects, and the dwell
time on a social media page is relatively long that interweaved
traces could be rarely generated.

We use the tcpdump [44] to record the network traffic. We cap-
ture the HAR (HTTP Archive) files to record the browser activities
during web page loading. To automatically log the HAR files, we
invoke browsers’ built-in developer modes by setting the prefer-
ence devtools.netmonitor.har.enableAutoExportToFile in Firefox
and using the automated chrome profiling [35] library in Chrome.
Note that the HAR files are only required in the training process to
identify the IP addresses of the CDN servers (detailed in Section 3.4),
but not required when conducting the actual attack.

We select the top four social media websites from the Alexa
Top Sites for our evaluation, including Facebook, YouTube, Twitter
and Instagram. For each site, up to 30,000 (to be detailed soon)
most liked or followed user profiles listed on Trackalytics [46] are
collected. On each profile page, the collection process has to let the
browsers stay sufficiently long for the page to be fully loaded. This
time is set to be 14 seconds since the average web page loading
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Figure 3: Visualization of network traffic, CDN traffic and CDN bursts of two example Instagram profile pages

time in most countries is around 8 to 10 seconds [6]. Between two
pages, a break of at least 8 seconds is set to comply with the privacy
policy of the websites and to avoid being blocked.
Closed-world Datasets. Datasets D1 and D2 are collected from
Campus A and Campus B respectively. Dataset D1 is collected
within two weeks. It contains the traces of the top 1,000 most
liked/followed user profiles pages from each website. Due to its
diversity (in terms of machines, software stacks and time span),
we mainly use D1 to evaluate the performance of the intra-domain
WPF in the closed-world model. Dataset D2 contains the traces of
the top 300 pages from each site. It is collected within a relatively
stable environment and within a relatively short time (mostly 2
days, but 1 week for Facebook due to its visit frequency constraint)
so that it is “clean” for benchmarking our work. In both datasets,
each page is recorded for 55 traces.
Open-world Datasets. For evaluation against open-world model,
we have collected the dataset D3 from Campus A. D3 includes the
traces of 300 monitored pages (denoted by M) and up to 30,000
unmonitored pages (denoted by U) for each site. Each page inM is
recorded for 55 traces. For each page in U, three traces are recorded
for redundancy. We cross validate these three traces by their sizes
to remove the faulty ones, and keep only one trace for training and
testing (detailed in Section 3.4).

3.3 Ethical Considerations
Our data collection generates overall 424K visits to the four social
media websites. These visits are distributed over four weeks, and
much fewer than their billions of daily visits. The impact to their
servers is thus negligible. We only store the IP packets, in which all
application-layer data are encrypted. Before releasing the datasets
to facilitate future research, we anonymize any field that may reveal
identities, including IP addresses, port numbers, labels, etc.

3.4 Data Pre-processing
Outlier Removal. Given the collected datasets, we first remove the
faulty traces where no packets or only partial packets are received.

To further eliminate the possible noisy training data, we use a
interquartile range (IQR) based approach [23] to remove the outliers,
a standard way to detect noise used by literature [32]. Intuitively,
the traces whose total transmitted data sizes deviate significantly
from median value are considered as outliers and therefore are
removed. For pages in D1, D2 and the 300 monitored pages in D3,
we calculate the total transmitted data size for each trace in the
training dataset, and eliminate those whose total size is out of the
interquartile range [𝑄1 − 1.5𝐼𝑄𝑅,𝑄3 + 1.5𝐼𝑄𝑅], where 𝑄1 and 𝑄3
represent first and third quartiles, and 𝐼𝑄𝑅 = 𝑄3 −𝑄1. In this way,
an average of 5% traces in the training dataset are removed. Note
that outlier removal is not applied on the testing traces. This ensures
an unbiased evaluation of the classifier, and simulates a realistic
scenario where the attacker has little control over the testing data.

In the remaining of this paper, whenwe refer to the three datasets,
we actually mean the datasets after pre-processing.
CDNTraffic Identification. In reality, a CDNURLmay bemapped
to a list of IP addresses for load balancing. Therefore, we conser-
vatively assume the attacker has to construct such a map before
starting the attack. Because the number of IP addresses is quite
small (at most 14 according to our study), it is feasible for the at-
tacker to obtain a full list by gathering the URLs from profile pages
and querying DNS servers multiple times prior to the attack. To
simulate this, we query through parameters such as requestId and
ResourceReceiveResponse in the collected HAR files, and find the
URLs corresponding to image and video files. Then we resolve them
into IP addresses by querying public DNS servers including Google
DNS, OpenDNS Home, Alternate DNS and CleanBrowsing.

4 LEARNING ALGORITHM AND FEATURE
INFORMATIVENESS

In this section, we discuss the web fingerprinting as a classification
problem in the context of intra-domain WPF. We also examine the
informativeness of our classification features derived from CDN
bursts, inspired by [25] which urges for the quantification of the
information leakage from the classification features.
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4.1 Technique and Evaluation Metrics
Classification Technique. In our datasets, each web page in the
monitored set (i.e., the A in closed world and theM in open world)
is a class, and thus |A| or |M| + 1 classes are included (one extra
indicates the unmonitored class). To suit the multi-class classifi-
cation, we select the random forests in our work. Random forests
are a classification technique [7] based on the votes made by the
majority of decision tree ensemble included in the forest. Random
forests have been employed to classify the encrypted network traffic
by recent studies on website fingerprinting [17, 54]. They require
shorter training time and fewer training instances than traditional
machine learning (such as SVM and KNN) [27, 32, 49, 50] and deep
learning algorithms (such as autoencoder or CNN) [24, 25, 30, 42].
For example, fewer than 100 labeled training data for each class is
sufficient for random forests, while CNN may require at least 500
each [53] such that it demands much longer collection period than
the former. The efficiency of random forests is crucial for finger-
printing social media pages whose contents change so frequently
that timely updating of the datasets and retraining of the classifiers
are necessary. In addition, although random forests rely on man-
ually crafted feature sets, the analysts would be able to interpret
the features better (e.g., to analyze the feature-based information
leakage and their relative importance) compared to those derived
from deep neural networks.

Each tree in the random forests is trained from the fixed-sized
labeled feature sets. Despite the bootstrap sampling process used for
tree construction, cross validation is still necessary in an unbiased
evaluation for our classifier. Cross validation is also important to
determine a robust burst threshold 𝛿 . Therefore, we apply a 10-fold
stratified cross validation. The training part (9 folds) is used to
generate a classifier from the “fingerprint” of each monitored page.
The testing part (1 fold) is used to validate whether a trace matches
any of the fingerprints. We pad/truncate the feature vector to a
fixed length of 50 which is larger than most vectors’ dimensions.
Classification Performance Measurement. To determine the
classification performance, we adopt the following four metrics3
commonly used in the web fingerprinting literature [17, 39].

• Accuracy (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑇𝑃+𝑇𝑁
𝑡𝑜𝑡𝑎𝑙

) is the ratio of the correctly
classified web pages to the total number of input web pages.
• True positive rate (𝑇𝑃𝑅, 𝑇𝑃

𝑇𝑃+𝐹𝑁 ) is the probability of cor-
rectly classifying the web pages.
• False positive rate (𝐹𝑃𝑅, 𝐹𝑃

𝐹𝑃+𝑇𝑁 ) is the probability of in-
correctly classifying the web pages.
• Bayesian detection rate (𝐵𝐷𝑅) is the probability that a
web page is correctly identified by the classifier as a labelled
monitored web page. For simplicity, we assume the visiting
of web pages by users follow the uniform distribution. Using
Axelsson’s definition [4], we formulate 𝐵𝐷𝑅 as

𝐵𝐷𝑅 =
𝑇𝑃𝑅 · 𝑓𝑚

𝑇𝑃𝑅 · 𝑓𝑚 + 𝐹𝑃𝑅 · 𝑓𝑢
,

where 𝑓𝑚 is the fraction of traces from monitored pages in
the total web traces, and 𝑓𝑢 is that for unmonitored pages.

3To facilitate the metrics definitions, we use the following denotations: TP (true
positive), FP (false positive), TN (true negative) and FN (false negative).

Among the four metrics, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is used for evaluating the
classification performance in the closed-world setting, since the
class sizes (a class size refers to the number of traces for each page)
are balanced in D1 and D2 (i.e., each data class takes a fixed propor-
tion of the total sampled data). In contrast, 𝑇𝑃𝑅, 𝐹𝑃𝑅 and 𝐵𝐷𝑅 are
used in the open-world setting since the sizes of the monitored and
unmonitored classes are significantly imbalanced. 𝑇𝑃𝑅 and 𝐹𝑃𝑅
check whether the correct classification rate and false alarm rate for
monitored pages are balanced, while 𝐵𝐷𝑅 measures the feasibility
of the attack in reality by taking into consideration the fraction of
the monitored pages in the sampled pages. The reason we use 𝐵𝐷𝑅
as the evaluation metric in open-world setting is because a low 𝐹𝑃𝑅

does not necessarily imply a high probability of successful attacks
when the fraction of the monitored web pages are extremely low,
also known as the base rate fallacy paradox [5].

4.2 Feature Information Leakage Measurement
Fundamentally, classifiers can distinguish among classes since the
classification features contain some amount of information. These
features, on the other hand, can leak information to the attacker. To
quantify such leakage and also to figure out the feature importance,
we formalize the information contained in each feature as the mu-
tual information in a similar way as presented by Li et al. [25]. It
quantifies the amount of information about a random variable (i.e.,
the identity of a web page) derived from another variable (i.e., the
features extracted from the network traffic).

Definition 1. The amount of information about a web page con-
tained in the fingerprint of the trace is I (F ;W ):

𝐼 (𝐹 ;𝑊 ) = 𝐻 (𝑊 ) − 𝐻 (𝑊 |𝐹 ), (1)

where F is a random variable corresponding to a single or a set of
features in the fingerprint of a trace; W is a random variable about
the web page identity; I (F ;W ) denotes the mutual information
between variables F andW ;H (W ) denotes the information entropy
of variable W ; H (W |F) denotes the conditional entropy of the
variableW given the variable F .

Below we calculate 𝐻 (𝑊 ) and 𝐻 (𝑊 |𝐹 ). Assuming that the page
the user is browsing is𝑤 ∈ V, 𝐻 (𝑊 ) can be calculated as follows.

𝐻 (𝑊 ) = −
∑
𝑤∈V

𝑃𝑟 (𝑤) log2 𝑃𝑟 (𝑤)

= − 𝐶 |V|
𝐶 |A| + |V − A| log2

𝐶

𝐶 |A| + |V − A|

(2)

where 𝐶 is the number of traces for each monitored page; 𝑃𝑟 (𝑤) is
the probability that the identified page is𝑤 .

Given a variable 𝐹 𝑗 representing the j-th feature whose value
range is denoted by F𝑗 , the conditional entropy of the variable𝑊 ,
i.e., 𝐻 (𝑊 |𝐹 𝑗 ) is, as follows.

𝐻 (𝑊 |𝐹 𝑗 ) = −
∑
𝑓𝑗 ∈F

𝑃𝑟 (𝑓𝑗 )
∑
𝑤∈V

𝑃𝑟 (𝑤 |𝑓𝑗 ) log2 𝑃𝑟 (𝑤 |𝑓𝑗 ), (3)

where 𝑃𝑟 (𝑓𝑗 ) is the probability that feature 𝐹 𝑗 has a value 𝑓𝑗 , and
𝑃𝑟 (𝑤 |𝑓𝑗 ) is the probability that the identified page is𝑤 given that
the value of feature 𝐹 𝑗 is 𝑓𝑗 .

According to Equation 3, the key for calculating the final infor-
mation leakage is to derive the probability density function (PDF)
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of feature 𝐹 𝑗 and the conditional probability 𝑃𝑟 (𝑤 |𝑓𝑗 ). We estimate
the former using a histogram-based approach commonly used for
entropy estimation [34]. In particular, we partition the range F𝑗
of feature 𝐹 𝑗 into 𝑛 equal intervals (𝑙𝑖

𝑗
, 𝑢𝑖

𝑗
) where 𝑖 ∈ {1, 2, ..., 𝑛}.

𝑃𝑟 (𝑓𝑗 ) is represented by the fraction of traces whose feature 𝐹 𝑗
evaluates to 𝑓𝑗 ∈ (𝑙𝑖𝑗 , 𝑢

𝑖
𝑗
), against the total number of traces in the

whole dataset. 𝑃𝑟 (𝑤 |𝑓𝑗 ) is represented by the fraction of traces
whose labels are𝑤 and feature 𝐹 𝑗 evaluates to 𝑓𝑗 ∈ (𝑙𝑖𝑗 , 𝑢

𝑖
𝑗
), against

the total number of traces whose feature 𝐹 𝑗 evaluates to 𝑓𝑗 ∈ (𝑙𝑖𝑗 , 𝑢
𝑖
𝑗
)

in the whole dataset. Therefore,we have

𝑃𝑟 (𝑓𝑗 ) =
𝐾𝑤
𝑗

𝐶 |V| and Pr(𝑤 |𝑓𝑗 ) =
𝑁𝑤
𝑗

𝐾𝑤
𝑗

, (4)

where 𝐾𝑤
𝑗
is the number of traces in D3 whose feature 𝐹 𝑗 evaluates

to 𝑓𝑗 ∈ (𝑙𝑖𝑗 , 𝑢
𝑖
𝑗
); 𝑁𝑤

𝑗
is the number of traces that are from web page

𝑤 and feature 𝐹 𝑗 evaluates to 𝑓𝑗 ∈ (𝑙𝑖𝑗 , 𝑢
𝑖
𝑗
).

All in all, the information leakage of the j-th feature can be
quantified as follows.

𝐼 (𝐹 𝑗 ;𝑊 ) =𝐻 (𝑊 ) − 𝐻 (𝑊 |𝐹 𝑗 )

=
∑
𝑓𝑖 ∈F

𝐾𝑤
𝑗

𝐶 |V|
∑
𝑤𝑖 ∈V

𝑁𝑤
𝑗

𝐾𝑤
𝑗

log2
𝑁𝑤
𝑗

𝐾𝑤
𝑗

− 𝐶 |V|
𝐶 |A| + |V − A| log2

𝐶

𝐶 |A| + |V − A|

(5)

This is used to quantify information leakage by CDN bursts in
Section 5.1.

5 EVALUATION
Our evaluation focuses on the performance of the intra-domain
WPF and the effectiveness of CDN bursts as classification features.
We explore the three main research questions.
• RQ1. Can CDN bursts be used as a distinguishable “finger-
print” for the intra-domain WPF?
• RQ2. Is intra-domain WPF feasible in reality (i.e., the open-
world scenario) and to what extend can it scale?
• RQ3. What factors may affect the performance of CDN
bursts in the intra-domain WPF?

5.1 RQ1: Intra-domain WPF in Closed-world
Experiment Setup. To answer RQ1, we choose accuracy (cf. Sec-
tion 4.1) as the evaluation metric of the intra-domain WPF in the
closed-world model. In the literature, the closed-world model is
extensively used as a baseline to benchmark the fingerprinting
algorithm [8, 17, 32, 38, 49]. To avoid the influence on accuracy
due to the unbalanced class distribution in the datasets, we use our
datasets D1 and D2 in the experiments. We apply 10-fold stratified
cross validation on the datasets. According to our study on the burst
threshold 𝛿 , which is detailed soon in Section 5.3, we set 𝛿 to be 0.05s
when we apply our feature engineering algorithm (Algorithm 1) in
all experiments.
Performance of Intra-domainWPFwith Varying Number of
Pages. We use varying numbers of web pages (i.e., |A| or |V| as in
the closed-world model, A = V) ranging from 200 to 1,000 from
D1 for the evaluation. As shown in Figure 4, we achieve accuracy
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Figure 4: Intra-domain WPF with varying number of pages

Table 1: Comparison of fingerprinting approaches on D2

Attacks Accuracy
Instagram Facebook Twitter YouTube

k-fp 0.181 0.833 0.340 0.367

CUMUL 0.829 0.964 0.909 0.894

WPF 0.953 0.932 0.903 0.948

Table 2: Time and memory consumption

Attacks Training Time (min) / Memory (GByte)
Instagram Facebook Twitter YouTube

k-fp 6.2 / 5.5 5.0 / 5.4 5.0 / 5.6 4.5 / 4.7

CUMUL > 3.5 hours / ~5.0 in each site

WPF 1.5 / 3.7 3.0 / 4.9 2.5 / 4.7 2.0 / 4.1

The data is collected on a Surface Pro 6 with Intel i5 4-Core CPU@1.6GHz and 8G
RAM. The training time includes the cross-validation time. The time consumed by
feature engineering is not shown, as each approach takes similar time (~10min).

in the range of 0.92 to 0.99. It is also noticeable that the accuracy
has a minor drop for Twitter. This may be because in Twitter, the
CSS and JavaScript files are also located in the same CDN servers
as images and videos, which may slightly disturb the CDN bursts.
Performance of Inter-domain Features for Intra-domainWPF.
As the inter-domain WSF has been well researched, we also explore
the applicability of its techniques to the domain of intra-domain
WPF. We apply two state-of-the-art inter-domain WSF approaches,
k-fingerprinting (denoted by k-fp) proposed by Hayes et al. [17] and
CUMUL proposed by Panchenko et al. [32], to our datasets. K-fp
is based on random forests and CUMUL is on SVM. For k-fp, we
adapt our data format for it and use its released code in our experi-
ment; for CUMUL, due to incompatibility issues, we re-implement
it by closely following the same feature extraction and classification
techniques detailed in its paper. To avoid bias, we use D2 in our ex-
periments due to its cleanness (cf. Section 3.2). The results are listed
in Table 1, and the computation time and memory consumption
are listed in Table 2.

Although it may be unfair to directly compare approaches tar-
geting different attacker models, our approach generally achieves
higher accuracy and lower overhead (shorter training time and
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Table 3: Information leakage by the features of CDN bursts
(bit) measured in the closed-world model

Burst Index 1 2 3 4 5 6 7 8

Info Leak 3.87 3.22 2.64 2.08 1.83 1.71 1.51 0.52

less memory consumption) than the other two techniques. Our
approach slightly outperforms CUMUL in general, but requires
much shorter training time and less resource. There are modest
improvements in accuracy, ranging from 5 to 10 percentage points,
compared with CUMUL in Instagram and YouTube. This improve-
ment is likely because CDN bursts capture the subtle differences of
the objects better than the cumulative features that CUMUL relies
on. Our approach marginally underperforms CUMUL in accuracy
by 0.1 to 3 percentage points in Facebook and Twitter, plausibly due
to the fact that content personalization results in greater variations
in the cumulative sizes of pages, which could be better captured by
inter-domain fingerprinting techniques like CUMUL. The accuracy
of k-fp is relatively low since the features used by it mostly focus on
the packet counts rather than the packet lengths. For intra-domain
web pages, the packet count features have lower distinguishing
capacity since web pages generated from the same template and
sourced from the same web server would exhibit similar packet-
wise patterns.

Apart from the existing inter-domain WSF approaches, we also
explore the capacity of deep learning in the intra-domain WPF
using a larger dataset we have collected. For each website, we select
the most liked or followed 100 pages and each page is recorded
with 500 traces. We conduct our experiments with a recent deep
learning based WSF approach named DF, which is proposed by
Sirinam et al [42]. We have observed that the size of the training
samples has a significant impact on the classification performance.
In particular, when DF is evaluated using the same setting as [42],
its accuracy (ranging from 0.5 to 0.85) is significantly lower than
our approach (> 0.9); when evaluated using a larger dataset (>300
traces per page), its accuracy becomes comparable with ours. This
implies that our approach may be more realistic in practice than
the deep learning based counterparts which require extended data
collection period and higher computation capacity.
Information Leakage by CDN Bursts. We use dataset D2 to
quantitatively evaluate the information included in CDN bursts
which is utilized in classification (cf. Equation 5). We measure the
average information leakage for both individual CDN bursts and
the cumulative CDN burst. The results of the most informative 8
bursts are shown in Table 3. The CDN bursts are indexed according
to their sizes. Larger bursts are observed to leak more information
(up to 3.87 bits) than the smaller ones (down to 0.5 bit).

We note that the information leakage is calculated on the basis
of each feature as an indication of its effectiveness. There may be
correlation but not causation between the information leakage of
individual features and the final classification accuracy since the
classifier also utilizes additional information pertaining to groups
of features. This type of information leakage will be investigated
as our future work.
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Figure 5: Performance comparison of web-server bursts and
CDN bursts for intra-domain WPF in Instagram pages.

Table 4: Training and Testing Datasets

Training Set 9 folds of the traces inM𝑡𝑟 and
a set of randomly selected traces U𝑡𝑟 ⊂ U

Testing Set The remaining 1 fold the traces inM𝑡𝑟 and
the remaining traces in the set (U − U𝑡𝑟 )

Intra-domain WPF Using Web-server Bursts. We also apply
our feature engineering algorithm to web server traffic to explore
whether the web-server bursts can be used as fingerprints. We
measure the classification accuracy for Instagram traces in our
dataset D1 as an illustration, as shown in Figure 5. It is observed
that the accuracy using web-server bursts is significantly lower
than that using CDN bursts. On the other hand, the accuracy is not
extremely low due to the marginal differences among web pages.
However, this difference becomes trivial as the number of pages
increases, and thus the accuracy declines at a faster pace (23.3%
from 200 pages to 1,000 pages) than that based on CDN bursts (2.8%
from 200 pages to 1,000 pages). This indicates the web-server bursts
may not be robust features.

5.2 RQ2: Intra-domain WPF in Open-world
Experiment Setup. To answer RQ2, we conduct the intra-domain
WPF in the more realistic open-world model. Due to significant
size imbalance in the monitored (i.e.,M) and unmonitored set (i.e.,
U), we use TPR, FPR and BDR as our evaluation metrics. TPR and
FPR determine whether the detection rate and false alarm rate are
balanced, i.e., the classification correctness. For feasibility evaluation,
we use the metric BDR, which takes into consideration not only
TPR and FPR, but also the ratio of monitored and unmonitored set
size, such that the rates on the unmonitored set (much larger than
monitored set) would not dominate the metrics.

We use the open-world dataset D3 in our experiments. Recall
thatD3 includes 55 traces/page × 300 monitored pages (i.e.,M), and
one trace/page× up to 30,000 unmonitored pages (i.e.,U) for each of
the four sites. Two variables are investigated for their influence on
the performance of the intra-domain WPF using 10-fold stratified
cross validation. For each round, we construct the training and
testing datasets as is shown in Table 4. We first select a subset
M𝑡𝑟 from M, and use nine folds of the traces from each page for
training and the remaining one fold for testing. Then, we select a
subset U𝑡𝑟 from U for training and the remaining traces for testing.
In our setting, M𝑡𝑟 is to simulate attacker’s target set; U𝑡𝑟 is to
simulate that the attacker includes extra web pages outsideM into
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Figure 6: Performance of intra-domain WPF in the open-world model

his training dataset, indicating the attacker’s capability of profiling
some web pages outside his targeted page set; U𝑡𝑒 is to simulate
the background noise when the user is browsing the intra-domain
web pages but outside the attacker’s training dataset. We analyze
the feasibility of intra-domain WPF by varying the size ofM𝑡𝑟 and
U𝑡𝑟 separately in this section.
Performance of Intra-domainWPFwith Varying Number of
Monitored Pages in Training Set. In this experiment, the size of
M𝑡𝑟 varies while we maintain 1,000 pages in U𝑡𝑟 and 6,000 pages
in U𝑡𝑒 . We let the size of M𝑡𝑟 vary from 1 to 300, and determine
the TPR, FPR and BDR. Our results are in Figure 6 (a). It is observed
that intra-domain WPF achieves a stable performance against an
increasing number of monitored pages in the training set. TPR
exhibits a slight downward trend which stabilizes at around 0.9,
while FPR shows a slight upward trend which stabilizes at around
0.001. The BDR quickly converges to nearly 1.0 at 50 monitored
pages from around 0.9 at 1 monitored page.
Performance of Intra-domainWPFwith Varying Number of
Unmonitored Pages in Training Set. In this experiment, the
size of U𝑡𝑟 varies while we maintain unchanged 30 pages inM𝑡𝑟

and 20,000 pages in U𝑡𝑒 . We use Instagram, with 29,000 collected
unmonitored pages, as a case study to evaluate the influence of the
size of U𝑡𝑟 . Intuitively, the more unmonitored pages the attacker
includes in the training set, the higher precision and fewer mistakes
he would make in picking out the monitored pages. The reason
we choose a monitored set of 30 pages against an unmonitored
set of 20,000 pages is to simulate a realistic scenario in which the
monitored pages take up merely a tiny portion (~2%) of the total
pages possibly visited by the victim. We include varying sizes of
U𝑡𝑟 from 1,500 to 9,000, and determine the TPR, FPR and BDR, as
shown in Figure 6 (b).

It is observed that our approach achieves a consistent perfor-
mance against an increasing number of unmonitored pages in the
training set, with marginally decreasing TPRs at around 0.96 (from
0.97 down to 0.96), decreasing FPRs at around 0.0015 (from 0.0017
down to 0.0014) and increasing BDR at around 0.93 (from 0.92 up to
0.94). The consistently high BDR indicates the feasibility and high
successful rate of intra-domain WPF to identify a small amount of
pages from a significantly larger set. This result shows that intra-
domainWPF is feasible without requiringmuch knowledge of pages
outside attacker’s target set.

5.3 RQ3: Influencing Factors of CDN Bursts
In this section, we study the influence of the burst threshold 𝛿 and
network latency on fingerprinting performance.

A
cc

ur
ac

y

(a) Accuracy with varying the burst threshold 𝛿

Instagram
YouTube

Twitter
Facebook

Twitter
Facebook
YouTube

Instagram

A
cc

ur
ac

y

1.0

0.9
0.8

0.7

0.6
0.5
0.4

0.3

A
cc

ur
ac

y

1.0

0.95

0.90

0.85

0.75

0.80

10!" 10!# 10!$ 1 2 3 4 5 6
Alpha value of Gamma Distribution𝛿 size (seconds)

(b) Accuracy with varying 𝛼 values in 𝛾~𝛤(𝛼, 𝛽)

(a) Accuracy with varying mean values 
of delays (i.e., 𝛼/𝛽 in 𝛤(𝛼, 𝛽)）

Twitter
Facebook
YouTube

Instagram
Twitter
Facebook
YouTube

Instagram

A
cc

ur
ac

y

A
cc

ur
ac

y

1.0

0.8

0.6

0.4

0.2

0.0

0.8

0.7

0.6

0.5

0.4

0.3
0.2

0.1

1 2 4 6 8 10
Values of n

(b) Accuracy with varying n

25 50 75 100 125 150
Mean Value of Delay (ms)

0.0

Figure 7: Evaluation on Influencing Factors

Burst Threshold 𝛿 . According to the feature engineering method
introduced in Section 2.2, we group consecutive packets into a CDN
burst when the inter-packet time gap is less than a value referred
to as the burst threshold 𝛿 . The choice of 𝛿 would impact the total
number of CDN bursts and the size of each burst. To determine a
suitable 𝛿 for the real-world application of the intra-domain WPF,
we measure the classification accuracy against various 𝛿 values
ranging across magnitudes (from 1ms to 500ms) using dataset D1.
When calculating the accuracy, we also apply 10-fold stratified
cross validation to ensure the robustness and generalization in the
results and to eliminate impacts of random noise and errors. The
result is shown in Figure 7 (a). It is observed that the accuracy
peak when 𝛿 is around 50ms to 100ms. The accuracy is significantly
lower when 𝛿 value is very small (around 1ms) since many small
and varying-sized CDN bursts are derived, resulting in inconsistent
feature set. This confirms our estimation made in Section 2.2 that
due to the concurrent requests and network latency, it is more
robust to reconstruct a batch of objects, rather than an individual
object, into a burst. Nonetheless, the accuracy starts dropping when
𝛿 increases beyond the optimal value. This is because multiple
original bursts are grouped into fewer CDN bursts, reducing the
amount of information.
Variation in Network Latency. The variation in the network
latency, possibly due to unstable network condition, could lead to
the fluctuation on the Packet Interval Time (PIT). This may “break”
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the CDN bursts since the burst threshold 𝛿 is a temporal parameter.
To investigate this influence, we construct a simulated dataset based
onD2 by introducing extra latency to the timestamps of the original
traces. The added latency 𝛾 follows a Gamma distribution (𝛾 ∼
Γ(𝛼, 𝛽) with a shape parameter 𝛼 and a rate parameter 𝛽) which is
commonly used for modeling the network latency [21]. We adopt
6 Gamma distributions with different spread levels (i.e., 𝛼 . The
higher the 𝛼 , the less spread out the gamma distribution will be.)
and a fixed mean value (i.e., 𝛼/𝛽) of 48ms which is the average
latency in the major CDN service providers [11]. We construct the
CDN burst feature set from the simulated dataset and measure the
classification performance using the same approach in Section 5.1.
Our results are shown in Figure 7 (b).

As could be expected, the accuracy of intra-domain WPF in-
creases as the latency becomes more concentrated. When the net-
work latency distribution is concentrated within a small range (in-
dicating that the network condition is relatively stable), there are
only tiny shifts induced in the PITs. These shifts can be tolerated
by a sufficiently large burst threshold 𝛿 , causing less loss to the
accuracy. In contrast, when the latency spreads out, a larger latency
can break through the burst threshold, generating “noisy” bursts.

6 LIMITATIONS AND COUNTERMEASURES
In this section, we discuss the limitations of our intra-domain WPF.
We also propose and evaluate countermeasures against such attacks.

6.1 Limitations of Intra-domain WPF
Dependency on IP addresses. Our intra-domain WPF relies on
the server IP addresses to extract the CDN packets out of the net-
work traffic. This becomes infeasible when the network communi-
cation is protected by anonymizers such as VPN and Tor, in which
only the proxy or the entry node is trackable. The anonymizers
mix up CDN packets and web server packets, such that the bound-
ary to group packets into bursts is blurred out. As a result, the
distinguishability of the bursts may drop, as shown by our exper-
iments on Instagram (Figure 4), web server bursts (Figure 5) and
Tor browser (Section 6.2). However, the intra-domain WPF remains
a prominent threat since only a small proportion (~7%) of Internet
users frequently use VPNs and merely one third of them use it for
social websites [15], and the Tor population is much smaller.
Content Drift in Social Media Websites. Website fingerprint-
ing has been criticized for being impractical due to the changes
in the web page contents over time, also known as the content
drift [20]. Web pages in social media websites get updated partic-
ularly frequently, with millions of people posting on their social
media daily [55]. The updated content in a page would result in the
shift in the distribution of the objects, potentially causing changes
in the patterns of CDN bursts and undermining the trained classifier.
This requires updating the dataset and retraining the model timely
to maintain a high accuracy. In this regard, our approach endures
less impact from content drift than those requiring large numbers
of training instances (i.e., deep learning based approaches).

6.2 Possible Countermeasures
Given that the intra-domain WPF utilizes the temporal and volu-
metric features of the CDN traffic, we propose defenses to mitigate
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Figure 8: Simulated Evaluation on Defenses

these aspects in the traffic. To investigate their effectiveness, we
use a small (for efficiency of experiments) dataset (denoted by D4)
that includes 50 traces of 50 randomly selected Instagram profile
pages from D2. The experiments conducted in this section are all
on D4, unless stated otherwise.
Deviating Packet Interval Time in CDN Servers. One counter-
measure is to break the expected packet arrival periodicity by devi-
ating the so-called Inter Packet Arrival Time (IPAT). This obscures
the boundary among the bursts such that the feature engineering
algorithm may fail to produce robust features. To do this, the CDN
server should add a marginal and randomized delay before it sends
out a packet. This countermeasure is inspired by our finding from
the experiment on the network latency in Section 5.3 that a spread-
out network latency can significantly lower the accuracy of the
intra-domain WPF. To explore its effectiveness, we simulate it by
adding a random value that follows a Gamma distribution (Γ(𝛼, 𝛽))
to the arrival timestamp of each packets in our dataset. We adopt 6
Gamma distributions with a fixed spread level at 𝛼=0.25 and varying
average delays 𝛼/𝛽 ranging from 25ms to 150ms.

As shown in Figure 8 (a), the intra-domain WPF accuracy drops
significantly with increasing mean values of random delays, given
a fixed spread level. Intuitively, the patterns of CDN burst would be
disrupted to a greater extent due to a larger random delay, indicating
a better defense performance. In general, this defense would not
incur an intolerable delay, compared with the average network
latency (50ms, cf., Section 5.3), and it does not increase bandwidth
overhead. Nonetheless, this countermeasure requires involvement
of the CDN service providers due to the server-side changes.
Loading Dummy Packets from Web Browsers. This counter-
measure forces the browser to send dummy requests to the same
CDN server in parallel with the genuine requests, creating dummy
CDN traffic to reshape the original CDN burst patterns. To simulate
this countermeasure, we insert dummy packets into the traces in
D4. The inserted packets are extracted from Instagram pages which
are not included in D4. We parameterize the portion of packets to
be inserted as 𝑛

10 (0 ≤ 𝑛 ≤ 10) of the original traces. Intuitively, 𝑛
dummy packets are inserted into every 10 packets.

Our results are shown in Figure 8 (b). It suggests that this counter-
measure can perform well even with a small proportion of dummy
packets. For example, the attack accuracy for Instagram drops to
0.175, down from 0.97, with only 10% of dummy packets. For Twit-
ter and Facebook, the attack accuracy drops to below 40% with only
20% of the inserted dummy packets. The defense performs better
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with even larger proportion of dummy packets. This countermea-
sure introduces limited bandwidth overhead and does not incur
much latency. It requires no changes to the CDN server since it is
deployed at browser side.
Anonymity Networks. Another possible defense is to browse the
web pages through Tor network which conceals the IP information
and incurs random latency due to the different routes selected. Since
only entry node IP address is available, the bursts can be extracted
only from the overall network trace. To explore the effectiveness,
we constructed a small test datasetD5 including 50 traces for each of
the 50 Instagram profiles loaded through Tor browser. We compare
the classification accuracy on D5 with that on D4, and find the
accuracy drops to 0.292, compared to the that of 0.97 on D4.

7 RELATEDWORK
The intra-domain WPF is intrinsically a web fingerprinting tech-
nique. The related work in this area has been focusing on inter-
domain WSF. This section summarizes both attacks and defenses.

7.1 Inter-domain Website Fingerprinting
The inter-domain website fingerprinting was firstly demonstrated
feasible by a series of early studies [10, 18]. They have used the
total volume of the data flow to differentiate encrypted network
traffic. More recently, the inter-domain WSF techniques [9, 17, 19,
20, 25, 33, 38, 50, 51, 54] are still mainly based on the encrypted
traffic characteristics including traffic patterns and traffic statistics,
but they are typically evaluated under more stringent criteria. For
instance, the performance is analyzed against both traditional en-
crypted channels and anonymous channels. The datasets used for
evaluation are also reasonably large, containing at least thousands
of unique websites.

Cai et al. [9] proposed an attack on Tor based on the optimal
string alignment distance (OSAD) feature, achieving 80% accuracy
in 100 websites. Wang et al. [49, 50] further improved the perfor-
mance of inter-domain WSF attack on Tor and achieved accuracy
over 90%. Wang et al. [51] explored the feasibility of practically
deploying the inter-domain WSF system. Recently, Wang [48] pro-
posed a new metric for evaluating the feasibility to realistically de-
tect the sensitive web pages, and used three optimizers to boost the
classifier performance. Gu et al. [16] evaluated the performance of
inter-domain WSF attacks under multi-tab browsing setting. Hayes
et al [17] proposed a novel inter-domain WSF technique based on a
variant of random forest, which achieved a TPR of 85% and an FPR
of 0.02% when monitoring 30 web pages out of over 100,000 unique
web pages. Panchenko et al. [32] presented an approach based on
an SVM classifier, utilizing the cumulative behavior representation
of the web page loading trace.

In the most recent contributions, Deep Neural Networks (DNN)
have been more adopted besides traditional machine learning al-
gorithms. Rimmer et al. [38] proposed a CNN-based inter-domain
WSF that automates feature engineering. The attack trained on
2,500 traces per site and achieved 96.3% accuracy. Oh et al. [30]
utilized unsupervised DNN to extract low dimension informative
features and achieved an accuracy of 94%. Sirinam et al. [42] pre-
sented a CNN-based classifier which achieved high accuracy on
both undefended and defended Tor traffic. Sirinam et al. [43] further

proposed an attack based on N-shot learning which enables feature
extraction using a pre-trained classifier. Their approach improves
the attack robustness and shorten the classifier preparation time.

Compared to inter-domain WSF, intra-domain WPF attack fo-
cuses on identifying the exact web page browsed by the targeted
user among the other similar web pages within the same web do-
main, utilizing a different set of web page-specific and volumetric-
based features. To the best of our knowledge, intra-domain WPF in
social media websites is an under-researched area. Miller et al. [28]
utilized similar packet burst features extracted from the traces of a
sequence of linked web pages within a website. Compared to our ap-
proach, this work requires constructing an interconnected structure
of the targeted web pages accessible within a website. This restricts
its applicability under our problem setting since web pages are gen-
erally independent of each other in social media sites. Schuster et
al. [39] demonstrated the feasibility of identifying different videos
based on the network traffic. They proposed a CNN-based attack
which obtains an accuracy of near 99% among over 3000 YouTube
videos. Shen et al. [41] proposed an attack to distinguish similar
web pages using the cumulative packet length feature. Compared
to our work, this work assumes an active attack model that is able
to intercept network traffic between victim user and web servers.

7.2 Inter-domain Fingerprinting Defenses
A number of defenses have been proposed to counteract the fin-
gerprinting. These mechanisms can be categorized into traffic flow
level and packet level, and both aim to produce indistinguishable
traffic. Panchenko et al. [33] presented a countermeasure based on
generating background noise through loading a web page at ran-
dom. Dyer et al. [13] proposed Buffered Fixed Length Obfuscation
(BuFLO) to send packets with a fixed size at constant traffic rate. Cai
et al. [9] proposed an improved version of BuFLO (CS-BuFLO), by
reducing the bandwidth and time overhead and adapting for conges-
tion. Furthermore, Cai et al. [8] presented a new defense Tamaraw
with a higher performance compared to CS-BuFLO. Nithyanand et
al. [29] designed the defense named Glove that groups web pages
with similar traces into clusters and adds covert traffic, such that
the web pages are indistinguishable within their own cluster.

There are also a few defenses in the application level. Tor intro-
duced randomized pipelining [36] that shuffles pipeline size (i.e.,
number of paralleled requests) as well as the request orders for web
objects. Luo et al. [26] constructed a defense called HTTPOS which
is essentially a proxy that modifies the TCP and HTTP requests
before sending them out.

8 CONCLUSION
In this paper, we propose the novel intra-domain WPF, which aims
to determine which web page a user has just browsed. The proposed
fingerprinting is based on a specially engineered feature set named
CDN bursts. We show that the intra-domain WPF is feasible in
social media websites, by investigating the informativeness of the
classification features derived from CDN bursts. We comprehen-
sively evaluate the intra-domain WPF with datasets collected from
four top social media websites, which contain traces of over 10k
unique pages and 400k page. Our evaluation demonstrate its high
fingerprinting accuracy (an average accuracy of up to 96% and a
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false positive rate as low as 0.02%) and computational efficiency (<
5mins training time). The datasets have been released to facilitate
research in this area. To the best of our knowledge, this work is the
first intra-domain WPF that is based on the patterns in CDN traffic.
Our work should raise an alert on this previously neglected threat.
Furthermore, we hope it will inspire more future research on the
general intra-domain WPF.
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