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ABSTRACT
WPA (Wi-Fi Protected Access) Enterprise is the de facto standard for
safeguarding enterprise-level wireless networks. It relies on Trans-
port Layer Security (TLS) to establish a secure tunnel during its
authentication process, and thus the notoriously error-prone certifi-
cate validation may haunt it. Incorrect validation may lead to the
SSL/TLS man-in-the-middle attack, or the evil twin attack in the
context of wireless networking, where the supplicant connects and
unwittingly sends authentication credentials to a fake access point.

We conduct an empirical study on the effectiveness of certificate
validation user interfaces (UIs) in WPA supplicants. We focus on
a broad variety of mobile devices and mainstream operating sys-
tems (OSes), and find that a vast majority of them are susceptible to
the evil twin attack. Insecure configuration options and lack of visual
security indicators have been found common. Besides, five severe
vulnerabilities (four are listed by CVE and one is found in parallel
with Google) are identified from their validation processes. By exam-
ining the source code of Android’s Wi-Fi manager, we link the root
causes of these vulnerabilities to the immature designs and imple-
mentations of WPA software modules. Our investigation, including a
review of Wi-Fi configuration guidelines of the top 200 universities
and a realistic experiment deployed in a company with over 50k
employees, reveals the user susceptibility in practice. Our findings
have been reported to Google, leading to a security enhancement in
the WPA supplicant of Android’s latest version 11.
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1 INTRODUCTION
The enterprise mode of WPA, WPA Enterprise (also referred to
as the WPA-802.1X mode), is the most commonly used security
mechanism for safeguarding enterprise-level wireless networks. It
empowers WPA with authentication capability through the EAP (Ex-
tensible Authentication Protocol) authentication framework [49],
which is carried by the Remote Authentication Dial In User Service
(RADIUS) protocol [51]. EAP supports a wide variety of authentica-
tion mechanisms without any pre-negotiation or involvement of the
pass-through agents (e.g., access points), such that it is compatible
with traditional password/token-based authentication methods.

EAP could directly utilize TLS as an authentication method by
reusing its mutual authentication feature based on client and server
certificates, leading to the EAP-TLS [59]. More commonly, EAP
uses TLS to establish a tunnel between the supplicant and the RA-
DIUS server (referred to as phase 1) to protect (legacy) inner au-
thentication methods (referred to as phase 2) such as PAP (Password
Authentication Protocol) and MSCHAP [41] (Microsoft Challenge-
Handshake Authentication Protocol). This leads to other widely
deployed protocols such as EAP-TTLS (Tunneled TLS) [21] and
PEAP (Protected EAP) [20]. They eliminate the use of client cer-
tificates for phase-1 authentication, freeing the enterprise from the
burden of deploying and managing a public key infrastructure (PKI).

Whenever TLS is involved, correctly validating server certificates
is crucial for recognizing a legitimate server. Otherwise, failures
could cause the access point impersonation attack, or the evil twin
attack [6, 13, 16]. It occurs when the supplicant is tricked into con-
necting to a rogue access point which has the same SSID as any of
the supplicant’s previously-connected access points. The attacker
could install a variety of attacks into the evil twin, for example, to
steal the phase-2 authentication credentials. Given that many com-
panies use the same authentication credentials (e.g., username and
password) for Wi-Fi and the internal single sign-on (SSO) system, a
single compromised account would threaten the confidentiality of
their sensitive services and information such as trade secrets. This
threat is further exacerbated by the increasingly popular BYOD
(bring your own device) scheme—the great variety in employees’
devices and installed OSes significantly enlarges the attack surface.

To defend against the evil twin attack, existing WPA supplicants
have implemented security countermeasures to allow users to con-
figure for mandatory validation, and to warn users once an evil
twin is detected. Nonetheless, they may not be as effective as their
counterparts in contemporary web browsers [24, 63], which display
the padlock icon and actively block suspicious sites. For example,
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some supplicants leave insecure “do not validate (certificate)” as the
by-default option [6].
Our Work. We study the effectiveness of the certificate validation
UIs in WPA supplicants. We focus primarily on the visual con-
figuration options and security warnings when the supplicant is
connected or reconnected to the enterprise wireless network, and
analyze whether they are sufficient to defeat the evil twin attack. Our
study involves a broad variety of device types (laptops and phones)
and mainstream OSes (Android, iOS, MacOS and Windows) that
affect at least 95% of global mobile device users according to their
market share [56]. We enumerate and test all configuration options
in each supplicant while connecting them to our evil twin testbed.
Our study finds that weaknesses in the UIs commonly exist in the
vast majority of existing WPA supplicant implementations. This is to
our great surprise, given that the evil twin attack has been noticed
for more than a decade [18] and many studies have been conducted
on other non-browser user agents [23, 27].

By examining the related source code in Android, we link the root
cause of these vulnerabilities to the immature designs and implemen-
tations of the WPA supplicants, as well as the insecure APIs exposed
by them. In the android.net.wifi package in initial AOSP 10,
we find that the WifiManager.addNetwork API permits the
option of “do not validate” in the configuration UI. This is inherited
by Original Equipment Manufacturers (OEMs) such as Vivo (CVE-
2020-12484) and Huawei (CVE-2020-1836). We also find that the
WifiManager.addNetworkSuggestions API confuses the
identifiers of the suggested configurations, allowing the attacker to
manipulate the certificates the wpa_supplicant accepts (the vul-
nerability A-150500247 acknowledged by Google). From the source
code of wpa_supplicant, we find that wpa_supplicant ac-
cepts any method proposed by the authentication server when the
phase-2 authentication method is not specified. This weakness al-
lows the attacker to manipulate the phase-2 authentication into a less
secure one and further obtain victims’ login credentials (CVE-2020-
0201 in AOSP and CVE-2020-9260 in Huawei OEM).

We conduct two studies to better understand the users’ suscepti-
bility to the evil twin attack on all OSes. First, we perform a review
of the Wi-Fi configuration guidelines of the global top 200 universi-
ties, revealing that only 37% (74/200) of them manage to provide
secure instructions to their users. Then, we deploy an evil twin in an
Internet technology company in a confined scenario, following the
legal and ethical guidelines from the company. The simulated attack
harvests 166 login credentials within a 40-minute period, suggesting
the severity of the weaknesses identified by our work. We re-conduct
the experiment after the company has taken actions to secure the
Wi-Fi, and still manage to gain 14 login credentials within 6 hours,
showing the persistence of the weaknesses. We thus propose several
recommendations and advice to mitigate the risk.

The security of WPA and certificate validation have been continu-
ally and actively studied in the literature [6, 13, 23, 27, 30, 36, 46, 54,
66–68]. Among the related works, Brenza et al. [13] leverage valid
server certificates and exploit the eap_workaround compatibility
setting in the phase-2 protocol to hijack the Eduroam connections.
Bartoli et al. [6] survey Eduroam users and reveal prevalent incorrect
network configurations used by them. As a comparison, our work
targets the general certificate validation UIs, and thus is applicable to
any WPA Enterprise network including Eduroam. Our work provides

a specific consideration of the implementations of UI/UX during the
client-side configuration. This complements existing studies on the
certificate validation in non-browser user agents that mainly target
the programmatic interfaces, such as those in SDKs [27, 46] and
APIs [23, 30].
Contributions. We summarize our contributions as follows.

∙ An approach to analyzing the effectiveness of certificate
validation UIs in WPA supplicants and a large-scale study.
We take into account the implementation of UI/UX into the
security assessment of certificate validation. We have ana-
lyzed 13 mobile device brands/models and 16 OSes/versions,
and revealed that most of them suffer from the evil twin attack
due to deficient configuration interfaces and inconspicuous
security warnings. This study is the first of its kind in the
literature, complementing the existing works in non-browser
user agents, such as mobile apps [23, 27, 46] and IoT de-
vices [4, 35, 38].

∙ Vulnerabilities affecting billions of users. Our work has
identified and reported four CVE-listed vulnerabilities (CVE-
2020-0201, CVE-2020-12484, CVE-2020-1836 and CVE-
2020-9260) and one Google-confirmed vulnerability (found
separately in parallel with Google). Our findings have led to
Android’s security enhancement in the WPA supplicant of its
latest version 11.

∙ Characterization of user susceptibility. Our studies have
revealed users’ susceptibility to the weaknesses in certificate
validation UIs, suggesting the necessity of enhancing them to
mitigate impacts from the evil twin attack.

2 BACKGROUND
Our work focuses on client-side issues during the authentication
process in WPA Enterprise, mainly the certificate validation in WPA
supplicants. In this section, we briefly review the WPA Enterprise
and its authentication process, covering several authentication proto-
cols in the context of this paper. We also recap the WPA Enterprise
configuration process in the mainstream OSes/devices.

2.1 WPA Enterprise and its Authentication
As shown in Figure 1, there are three principal participants in the
WPA Enterprise authentication model: a supplicant (STA) which
indicates the user device that supports the IEEE 802.1X standard, an
authenticator (AC) which is typically a network access point, and
an authentication server (AS) that runs the RADIUS authentication
protocol. For a supplicant to be admitted into the network, the suppli-
cant and the RADIUS server have to be mutually authenticated using
EAP with X.509 client/server certificates or/and inner authentication
methods. Given that EAP is designed to function within the point-to-
point protocols (PPP), EAP messages between the supplicant and
the access point are encapsulated using the EAP over LAN (EAPOL)
protocol in the wireless environment while those between the access
point and the authentication server are encapsulated using RADIUS.

In this work, we focus on the three most widely-deployed EAP
authentication protocols in WPA Enterprise [26], i.e., EAP-TLS,
EAP-TTLS and PEAP, since others are either proven insecure (EAP-
PWD [68]) or rarely used in practice (EAP-SIM and EAP-AKA). A
generic EAP protocol flow is shown in Figure 1. The authentication
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Figure 1: Participants and Workflow of WPA Enterprise

process incorporates three stages, i.e., discovery, key exchange and
authentication. Phase 1 includes the discovery and the key exchange
stages. In this phase, all three protocols follow the same process.
In the discovery stage, the supplicant connects with the AC and
initiates the authentication process, and in the key exchange stage,
an encryption key is established between the supplicant and the AS
via the TLS handshake (steps (1)-(5)). The authentication stage is
slightly different among three protocols:

∙ For EAP-TLS, the certificate-based mutual authentication is
completed within phase 1 where supplicant authenticates the
AS at step (3) and AS authenticates the supplicant at step (6).

∙ For EAP-TTLS and PEAP, the supplicant authentication
is completed in phase 2 at step (7) through the secure TLS
tunnel, after completing the AS authentication in phase 1.
The commonly supported phase-2 authentication protocols
(i.e., the inner authentication protocols) include PAP which
relies on username and password, MSCHAPv2 which extends
MSCHAP, and GTC (Generic Token Card) which uses the
password and a one-time token for authentication.

2.2 Certificate Validation UIs
During the discovery stage, the supplicant searches for available
networks and then automatically connects to one it recognizes, i.e.,
one that has been previously connected to or is in the preferred
network list. Thus, securely configuring the initial Wi-Fi connection
is essential for safeguarding the subsequent connections. However,
due to the complexity of WPA Enterprise and the diversity of its
implementations among OSes and devices, the configuration process
could be counter-intuitive for the users. Below we recap this process
in the mainstream OSes and devices, and its security implications.
Validation UI of Android. After clicking on the target network
SSID from the Wi-Fi Settings UI, the user is prompted to select
options including the EAP method, the phase-2 protocol and the CA

certificate validation method, as shown in Figure 2(a). The current
design allows the user to select the option “do not validate” or
“unspecified”. If either is selected, the user’s credentials could be
obtained by the attacker, as our work reveals (see Section 4.2).
Validation UI of MacOS and iOS. After clicking on the SSID, the
user is prompted to decide whether to trust the network or the pre-
configured profile before being connected, as is shown in Figure 3(a)
and (b). Generally, the detailed configuration is “hidden” inside the
profile and the user can manually generate this profile via the Apple
Configurator app shown in Figure 2(b). This configuration process
turns out to be complex and non-intuitive such that users are prone
to trust malicious access points.
Validation UI of Windows. After clicking on the SSID, the user is
prompted for their consent to connect to the network, as shown in
Figure 3(c). The user would have to manually configure the setting
if the by-default one is incompatible with the server-selected options.
To do this, the user opens the Network and Sharing Center and se-
lects “Set up a new connection or network”, followed by “Manually
connect to a wireless network”. The available options for the EAP
properties are shown in Figure 2(c). With such a UI design, the
users also tend to blindly trust any certificate and proceed with the
connection.

3 CHARACTERIZING WEAKNESSES IN
CERTIFICATE VALIDATION UI

The complexity of configuring the certificate validation may lead
to mis-configurations that is subject to the evil twin attack. In this
section, we present this attack, and characterize the desirable security
properties in certificate validation UIs.

3.1 The Evil Twin Attack
3.1.1 Attacker Model. Our work considers the active, on-path
evil twin attacker model [13, 16, 23], where the attacker deploys an
access point in the vicinity of the victim. It advertises the identical
SSID (thus named the evil twin) as the target legitimate wireless
network. Assume the victim supplicant has previously connected to
the target network. The attacker attempts to automatically reconnect
the victim supplicant or misleads the victim user to authorize the
reconnection. It impersonates the authenticator and RADIUS server
of the target network to complete the TLS handshake (phase 1) and
establish a rogue TLS tunnel with the supplicant. Through the rogue
tunnel, it obtains phase-2 authentication credentials.

To be practical, we assume the attacker exploits the insecure con-
figurations (e.g., missing CA certificate validation) set over the initial
connection to the target network, and attempts to steal the victim’s
authentication credentials in the subsequent attempts to connect with
the evil twin. This means the phishing attack that advertises a visually
identical SSID by including tailing non-printable characters (e.g.,
“SSID ” against “SSID”) to deceive the newly-connected users
is out of the scope of this work.

3.1.2 Attacker Capabilities. Through manually examining the
WPA Enterprise authentication process, we summarize the required
capabilities to launch the evil twin attack. Below we list them and
briefly discuss their feasibility.
Evil Twin Setup. The attacker is able to set up a mobile hotspot,
which could be launched using a laptop combined with a wireless
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Figure 3: Connection Warnings in Three OSes

network adapter. The attacker is also able to set up a RADIUS
server to manipulate the handshake messages exchanged with the
supplicant. This is achievable through open-source or free software,
e.g., hostapd [61] or FreeRADIUS [60]. Section 4.1 presents the
setup in our experiments, demonstrating the setup is feasible and
inexpensive.

To launch the attack, the victims need to be within the evil twin’s
signal range, under three possible scenarios depending on its setup
locations: the inner twin where the evil twin is within the enterprise,
e.g., inside an office building, the perimeter twin where the evil twin
is in the surrounding area near the enterprise, e.g., inside the car

Table 1: Evil Twin Attack Scenarios

Attack Deauthentication
Stealthiness2 Effectiveness3

Scenario Needed

Inner twin ✓ ⋆⋆⋆ ⋆⋆

STA⇔1target net non-suspicious likely disconnected

Perimeter twin

✓ ⋆⋆⋆ ⋆⋆

when STA⇔1target net fairly suspicious possibly disconnected

✗ ⋆⋆ ⋆⋆⋆

when STA⇎1target net fairly suspicious unlikely disconnected

Outer twin ✗ ⋆⋆ ⋆⋆⋆

STA⇎1target net suspicious unlikely disconnected
1⇔(⇎): The supplicant is (not) connected with the target network when attack is

launched.
2The stealthiness measures the degree to which the user becomes suspicious of the evil

twin signal. The signal from evil twin is considered non-suspicious (highly stealthy)
within the enterprise perimeter and vice versa.
3The effectiveness measures the degree to which the evil twin attack can be completed

without interference. The supplicant may be disconnected from the evil twin before the
completion of phase-2 authentication due to the stronger signal from the target network.

park of the enterprise, and the outer twin where the evil twin is away
from the enterprise, e.g., by the street 2 km away from the enterprise.
Table 1 lists the characteristics of each attack scenario.
Physical Channel. The attacker is able to deploy the evil twin in
a radio frequency different from that used by the target network to
avoid signal interference.
Communication Relay. The attacker is able to communicate with
the victim supplicant and the target network. In particular, the evil
twin could act as either a forwarder or a black hole after obtaining
the victim’s credentials. In the former case, it relays communication
between the supplicant and the target RADIUS server; in the latter
case, it simply drops the connection to avoid suspicion. It can record



Assessing Certificate Validation User Interfaces of WPA Supplicants ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

STA (victim) Evil Twin AC (honest)

(1) EAP-Request / Identity

(2) EAP-Response / Identity (MyID)

(5) EAP-Request (Start')

(6) EAP-Response  (Hello_C)

(9) EAP-Request 
 (Hello_S',Cert_S', Key_Ex_S')

(11) EAP-Response 
(Cert_C, Sig_C, Key_Ex_C)

(10) Check Cert_S

(13) EAP-Success

(15) Data Transmission

Phase 1

(3) EAP-Response / Identity (MyID')

(4) EAP-Request  (Start)

(7) EAP-Response (Hello_C')
(8) EAP-Request 

 (Hello_S,Cert_S, Key_Ex_S)

(12) EAP-Response 
(Cert_C', Sig_C', Key_Ex_C')

(14) EAP-Success

(16) Data Transmission

Figure 4: Evil Twin Attack Steps against Flawed Phase-1 Server
Certificate Validation

every frame exchanged from the beginning of the authentication
process, and modify the forwarded frames.
Deauthentication. The attacker is capable of forcing the victim
supplicant to disconnect from the target network by sending a deau-
thentication frame with a spoofed address [10]. The attacker could
repeat this action until the victim supplicant connects with the evil
twin. To serve this purpose, accessible tools such as aircrack-ng [1]
could be applied.

3.1.3 System Prerequisites. We make the following two as-
sumptions regarding the target network. First, its infrastructure,
including the authenticator and the RADIUS server, is securely
implemented. Otherwise the attacker is able to trivially compromise
the network. Second, it supports the popular WPA Enterprise au-
thentication protocols, including EAP-TLS, EAP-TTLS and PEAP.
For EAP-TTLS and PEAP, it supports the commonly used phase-2
authentication protocols such as MSCHAPv2, GTC and PAP.

3.2 Desirable Security Property in Certificate
Validation UIs

To the best of our knowledge, there is no available guideline on
client-side vulnerability assessment to follow when analyzing cer-
tificate validation UIs. We thus resort to an manual inspection on the
WPA Enterprise authentication protocols. We focus on the steps of
certificate validation and credential exchanging in the protocol, and
examine how UI elements affect these steps.

3.2.1 Desirable Security Property in Phase 1. Figure 4 zooms
into the steps of the evil twin attack against phase 1 of WPA Enter-
prise. In step (9), the attacker’s server certificate could be accepted by
the supplicant (step (10)) if certificate validation is mis-configured.
As of EAP-TLS, the supplicant would mistake the evil twin as the
target network. It then sends its client certificate (step (11)) and
establishes a TLS tunnel (steps (12)-(13)) with the attacker. For
EAP-TTLS and PEAP, the client certificate validation is optional
during the TLS handshake, as specified in [49]. The phase 2 would
use the established TLS tunnel for user authentication, such that the
user authentication credentials may be leaked (detailed in phase-2
vulnerabilities in Section 3.2.2). We have identified the following
security properties in phase 1 to prevent the above attack steps.

STA Evil Twin Radius Server
(Honest)

Phase 2
TLS Tunnel

(1-1) Auth Request
(1-2) Server Challenge
(1-3) Client Response, 
Client Challenge, ID

(1-4) Server Response

Compute Client Challenge

Validate Server Challenge

MSCHAPV2

(2-1) Username/ Password

(2-1) Success

(3-1) Server Challenge

(3-2) Token, Username/PasswordGenerate Tokem

PAP

GTC

Compute Server Challenge

Validate Password

Validate Client Challenge

Authenticate Using Victim's
Credentials

Figure 5: Evil Twin Attack Steps against Flawed Phase-2 Au-
thentication Protocols

P1-1: Freedom from insecure options in configuration of phase 1.
When first connecting to a WPA Enterprise network, user interactions
in phase 1, such as selecting the EAP protocol and the certificate
validation method, are crucial for the security of the connection. The
design of the GUIs thus must be intuitive and secure-by-default, so
that lay users without security expertise are able to provide secure
responses.

Examples of violation. Insecure options are listed in the con-
figuration of certificate validation (e.g., “Unspecified” or “Do not
validate”). The by-default option of certificate validation is “un-
specified”. Users are prompted to decide whether to trust a network
without sufficient information displayed.
P1-2: Presence of conspicuous visual cues when any error occurs.
The user would have a chance of rectifying the misconfigurations or
terminating insecure connections, if conspicuous warnings against
insecure options or untrusted certificates are given.

Examples of violation. The supplicant is automatically connected
to the evil twin that has the identical SSID as the target network
without any warnings prompted to the user. The user is allowed to
proceed with an insecure certificate validation option of “unspecified”
without any warning.

3.2.2 Desirable Security Property in Phase 2. The legacy au-
thentication protocols, such as MSCHAPv2, PAP and GTC, assume a
securely established TLS tunnel. Therefore, they may be at risk once
the TLS connection in phase 1 is compromised, as shown in Figure 5.
Among the existing phase-2 authentication protocols, MSCHAPv2
provides relatively strong user authentication, as it encrypts the
username/password. However, there have been well-documented
approaches [11, 34, 55] and tools (e.g., Openwall [62]) to retrieve
the user password from the challenge-response messages exchanged
in the handshake conversation (step (1-1) to (1-4)), regardless of
whether it is carried by EAP-TTLS or PEAP. For PAP and GTC, the
username and password/token are transmitted in plaintext (step (2-1)
and (3-2)) such that they can be trivially obtained by the attacker. In
view of these risks, the following property is expected to secure the
phase-2 authentication.
P2-1: Secure by default configuration of phase 2. The supplicant
should not set the by-default option of the phase-2 authentication
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Figure 6: A Photo of Our Experimental Setup

protocol as “Unspecified” or “None”, as this triggers the adaptive
setting that the client accepts the protocol type determined by the
server. The evil twin is thus able to manipulate it into PAP or GTC.

4 ASSESSING CERTIFICATE VALIDATION UI
IN ANDROID 10

Based on the recognized security properties in certificate validation
UIs, we propose a systematic testing approach to examining the
connection processes and identifying potential weaknesses. Given
that the open-source nature of Android enables in-depth scrutiny
and analysis, we first apply our approach to Android, and defer our
analysis on other OSes to Section 5.

4.1 Our Approach
Environment Setup. We aim to check whether the evil twin of a
previously connected network can hijack the supplicant’s connec-
tion or steal the login credentials. We deploy a simplified WPA
Enterprise authentication system as our confined experiment en-
vironment, to avoid posing security threats to any legitimate net-
works. The target network setup includes an access point and a
RADIUS server, both installed on the same laptop (shown in Fig-
ure 6). We use hostapd, which is a user space daemon software, to
transform a TP-Link TL-WN722N network interface card into
an access point. We use FreeRADIUS to implement the RADIUS
server. Considering the lightweightness and simplicity during the
implementation, we use hostapd to deploy RADIUS server for
evaluating EAP-TLS and PEAP. For EAP-TTLS, we use FreeRA-
DIUS for better protocol compatibility. We have registered the
domain name anonymous.domain, and purchased a certificate
for radius.anonymous.domain which is trusted by all de-
vices. Following the common practice, we set PEAP (phase 1) and
MSCHAPV2 (phase 2) as the default protocols.

In our setup, the evil twin is implemented as a replica of the
target network with the following three modifications. First, the evil
twin uses a self-signed CA certificate under test.domain, and
a fake server certificate signed by it. Second, the evil twin uses a
different channel to avoid signal interference. For example, if the
target network occupies the 5GHz channel, then the evil twin is
deployed on 2.4GHz. Third, the RADIUS server is modified to allow

Table 2: Fields and Options on Android WPA Enterprise Con-
figuration UI

Field Available Options

EAP Method PEAP, TLS, TTLS

Phase 2 authentication Null, PAP, MSCHAP, MSCHAPV2, GTC

CA Certificate Null, Use system certificate, Do not validate

Domain Null, anonymous.domain, malicious.domain

User Certificate Null, client.crt, Do not provide

Identity A

Password P(A)

connections from any devices. To this end, we disable client valida-
tion by modifying the eap_server_tls_ssl_init function
in src/eap_server/eap_server_tls.c.
Testing Procedure. We enumerate all possible combinations of the
options listed in Table 2, when setting the UI fields (recall this in
Figure 2(a)). For the “User Certificate” field, we generate a client
certificate (denoted by client.crt) as the input. We also create
a username/password pair A/P(A) for authentication. To test the
correctness of hostname validation, we purchase a certificate trusted
by all devices for the malicious.domain which is an input to
the “Domain” field. Each combination is regarded as a test case.
A test case can be represented as a tuple, for example, ⟨“PEAP”,
“PAP”,“Use system certificate”,“anonymous.domain” ,“client.crt”,

“A”, “P(A)”⟩.
Besides the GUI, Android also supports in-application Wi-Fi con-

figuration via the WifiManager.addNetworSuggestions
programmatic API. It is extensively adopted by enterprises to imple-
ment their BYOD schemes. Therefore, we also build an application
which incorporates our test cases to test this API. Our testing appli-
cation is released at [25].

We execute the test cases in two steps using Pixel 4 installed with
Android 10 (AOSP). In the first step, we turn on the target network
while keeping the evil twin off, and then configure the connection
using one test case. If the supplicant is successfully connected, we
proceed to the second step; otherwise, we discard the current test
case and set the connection with a new test case. In the second step,
we turn on the evil twin and turn off the target network, and check
if the supplicant switches to the evil twin (connection hijacked) or
if the username/password is leaked to the evil twin. To be practical,
the user is not required to re-configure the subsequent connections
after the initial connection. Nevertheless, the user may re-click on
the network SSID or authorize reconnection if prompted.

4.2 Testing Results on Android 10
During the experiments with the generated test cases, we have ob-
served the following weaknesses from the Wi-Fi configuration of
Android 10.
Observation #1: When the CA certificate is not validated (i.e., the
test cases ⟨ *, *, “Do not validate”, “Null”,*, “A”, “P(A)” ⟩), the
supplicant is directly connected to the evil twin in EAP-TLS. In EAP-
TTLS and PEAP, the username/password pair (i.e., A/P(A)) for PAP
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Figure 7: Architecture for WPA Supplicant in Android

and GTC, and the challenge-response hash value for MSCHAPV2
are sent to the evil twin.
Observation #2: When adding the network configuration automat-
ically through our application tester using seemingly secure test
cases ⟨“PEAP”/“TTLS”, “MSCHAPV2”, “Use system certificate”,*,
“client.crt”, “A”, “P(A)”⟩, the supplicant can still connect to
the evil twin.
Observation #3: When both CA certificate and phase-2 protocol
are not specified for EAP-TTLS/EAP-PEAP (i.e., the test cases
⟨“PEAP”/“TTLS”, “Null”, “Do not validate”, “Null”,*, “A”, “P(A)”⟩),
the supplicant uses the phase-2 protocol specified by the evil twin (we
set it to MSCHAPV2 in our experiment), and the challenge-response
hash is obtained by the evil twin.

4.3 Investigating Causes of the Observations
We review the source code of the android.net.wifi package
and the available source code from the other manufacturers to con-
firm the three observations and investigate their root causes. Through
this, we have located three weak points. To facilitate the understand-
ing of our investigation, we first brief Android’s Wi-Fi management
in Section 4.3.1. Then, we detail the identified weak points in Sec-
tion 4.3.2.

4.3.1 Internals of Android Wi-Fi Manager. Figure 7 shows the
components in each layer of Android OS that are involved in Wi-Fi
management. As mentioned in Section 4.1, the enterprise network for
Android devices can be configured manually through the Settings UI,
or automatically through applications built on the Wi-Fi suggestion
API, e.g., applications developed by BYOD-supporting enterprises
(referred to as BYOD apps hereafter).
Configuration through Settings UI. The Android Settings appli-
cation invokes the WifiManager.addNetwork API to inter-
act with the system service WifiService through AIDL (An-
droid interface description language). The WPA supplicant is further
configured for Wi-Fi connection by WifiService through hard-
ware binder (the configuration path is represented as (1)-a-(3)-d-(4)
in Figure 7). Upon the initial connection to a wireless network,

WifiService generates WifiConfigureStore.XML which
is a configuration file containing the settings from the connection
(the generation path is (1)-a-(3)-b-(5) in Figure 7). It is saved to
automatically restore Wi-Fi configurations upon device rebooting
(the configuration path is (5)-b-(3)-d-(4) in Figure 7).
Configuration through BYOD Applications. Before Android 10,
BYOD applications utilize the same configuration path as the An-
droid Settings. From Android 10 onwards, as part of the effort to
standardize services available to the third-party applications through
the Wi-Fi suggestion API, a distinct configuration path is adopted.
The WifiConfigStoreNetworkSuggestions.XML config-
uration file is created by the WifiNetworkSuggestion class in
WifiService through a BYOD application (the generation path is
(2)-e-f-(6) in Figure 7). The specified configuration is then assessed
and transferred to the WPA supplicant through WifiService (the
configuration path is (6)-g-(3)-h-(4) in Figure 7).

4.3.2 Vulnerabilities Identified. By analyzing the configuration
paths and the relevant source codes for the APIs and interfaces, we
locate the weak points that lead to the three observations. Their
locations are labelled in Figure 7. We also detail the function call
flows of the identified weak points in our technical report [25].
Weak point #1: insecure settings in addNetwork API. This weak
point leads to the Observation #1. The insecure settings in class
WifiEnterpriseConfig allow vulnerable options in the con-
figuration UI. In particular, setCaCertificate can be set as
“Null” (default setting until Android 7), which leads to the “Do not
validate” option in the UI. Under such a configuration, certificate
validation is disabled because no certificate path is given in the file
WifiConfigureStore.XML. As a result, any sever certificate
is accepted.
Weak point #2: flawed implementation in addNetwork-
Suggestions API. This weak point leads to the Observation #2.
We have revealed that the original Wi-Fi configuration is prone to
be “overwritten” without proper authorization. When the victim
is tricked into connecting to the evil twin (e.g., upon rebooting),
the addOrUpdateNetwork method in WifiConfigManager
class is invoked. The method will update the Wi-Fi configuration
since the victim has connected to the target network before. During
the update, the evil twin is able to replace the originally specified
CA certificates with a compromised one.
Weak point #3: adaptive setting on the phase-2 protocol. This
weak point leads to the Observation #3. From the source code file
eap_tls_common.c, we find that when “Null” is set to the func-
tion eap_peer_select_phase2_methods (i.e., the phase-2
protocol is set to “None” or “Unspecified” in the configuration UI),
the supplicant would query the RADIUS server for its supported pro-
tocols and automatically adapt to one of them. If the default protocol
from RADIUS server is also supported by the supplicant, it will be
selected. To confirm this weakness, we change the evil twin’s default
phase-2 protocol from MSCHAPV2 to PAP and re-run the test case.
As expected, we are able to derive the user’s login credentials.

4.4 Responsible Disclosure
We have promptly reported our findings to Google and the three
weak points are acknowledged. In particular, weak point #1 has
been fixed by the update in Android 11, weak points #2 and #3
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Table 3: Summary of Reported Vulnerabilities

CVE/Vulnerability
ID Weakness Affected OS Root Cause Patch

CVE-2020-12484
Weak
point #1

Vivo OEM 10
and earlier

setCaCertificate in
WifiEnterpriseConfig
can be null

Set setCaCertificate
and loadCertificates
as non-null

CVE-2020-1836
Weak
point #1

Huawei OEM
10 and earlier

setCaCertificate in
WifiEnterpriseConfig
can be null

Set setCaCertificate
and loadCertificates
as non-null

CVE-2020-0201*
Weak
point #3

Google AOSP
10 and earlier

Phase-2 protocol is al-
lowed to be set as null in
eap_tls_common.c

Remove the option
WIFI_PEAP_PHASE2_NONE

CVE-2020-9260
Weak
point #3

Huawei OEM
10 and earlier

Phase-2 protocol is al-
lowed to be set as null in
eap_tls_common.c

Remove the option
WIFI_PEAP_PHASE2_NONE

A-150500247**
(CVE-2020-0119)

Weak
point #2

Google AOSP
10

Confused alias for saved Wi-
Fi configurations

Create different aliases for
suggested and the previously
saved Wi-Fi configurations re-
spectively

* The severity level for this vulnerability is rated by NVD [44] as critical with a base score of 9.8.
** This was found separately in parallel with Google.

are acknowledged as vulnerabilities listed on CVE. With the aim
of minimizing possible security impacts, we also have tested other
Android-based devices and reported to the respective manufacturers
if the vulnerabilities also affect their devices. In particular, we are ac-
knowledged with CVE-listed vulnerabilities corresponding to weak
points #1 and #3. We ensure that the reported vulnerabilities have
been securely fixed in their updates, before disclosing details of the
vulnerabilities in this paper. All reported vulnerabilities have been
fixed in Android latest version 11 in response to our findings. The
available detailed bug reports and acknowledgment documents are
uploaded to our online repository [25]. In summary, Table 3 lists the
vulnerabilities together with their corresponding CVE/vulnerability
IDs, root causes and patches.

5 WEAKNESS PREVALENCE IN
CERTIFICATE VALIDATION UI

Fueled by the popularity of BYOD, WPA Enterprise has been sup-
ported among a great variety of devices: from laptops to smart
phones, from Windows to iOS, and from obsolete OS versions to
the latest ones. The diverse configuration options available in their
certificate validation UIs may lead to security weaknesses discussed
in Section 3.2. To better understand and further characterize them,
we extend our analysis from Android to the mainstream OSes and
devices, following the same methodology detailed in Section 4.1.

We examine laptops and smartphones which are the main devices
for enterprise network access. To be representative, we select OSes
and their most popular versions that cover more than 95% of the
global active users based on their market share [56], as listed in
Table 4. We find that the weaknesses in the certificate validation UIs
are ubiquitous among these OSes and devices. In addition, we also
notice that when secure options are configured, all of them manage
to correctly validate the certificate, including the certificate chain
and hostname. This suggests that the SSL/TLS libraries have been
securely implemented.
Windows. All versions of Windows (i.e., Windows 7, 8 and 10)
prompt for users’ permission before continuing with the authenti-
cation in Phase 1 (P1-1), as demonstrated in Figure 3(c). As part
of a secure procedure, the user should check the fingerprints of the
server certificate by clicking on the button “Show certificate detail”.

Table 4: Evaluation of Security Property in Various OSes

Properties
OS/Versions

Windows MacOS iOS Android (AOSP) Android (OEM)
7, 8 and 10 10 and 11 9-14 6-10 7-10

P1-1 (phase 1) ✗ ✗ ✗ ✗ ✗

P1-2 (phase 1) ✗ ✗ ✗ ✗ ✗

P2-1 (phase 2) ✓ ✓ ✓ ✗ ✗

✓ denotes the property is satisfied, and ✗ denotes otherwise.

Taking Windows 8.1, whose default phase-1 protocol is EAP-TTLS
and phase-2 protocol is PAP, as an example, the user’s username/-
password pair would be sent to the evil twin immediately after the
user clicks “Connect”. We have reported this vulnerability to Mi-
crosoft (MSRC Case number 62537), who responds that it is the
responsibility of the network administrator to disable this prompt so
that the certificate invalidity would lead to connection failure.

Windows 7, 8 and 10 suffer from the lack of conspicuous warn-
ings when the certificate validation setting is insecure (P1-2). For
example, no warning is issued when the user disables the server
certificate validation during manual configuration (all connections
including the initial connection) in PEAP, as is shown in Figure 2(c).
In addition, there is also no warning when a suspicious CA certifi-
cate (e.g., issued by an untrusted CA or unrecognized hostname) is
received.
iOS and MacOS. Similar to Windows, all latest versions of iOS (v9-
14) and MacOS (v10-11) seek the user’s authorization to accept the
certificate from the network being connected in phase 1 (P1-1). A
user needs to verify that both server certificate name and issuing CA
correctly match those adopted by the authentic network before trust-
ing it. Otherwise, the connection would be hijacked and credentials
would be disclosed. There is no warning when the user selects to
trust a suspicious certificate and proceeds with the connection (P1-2).
iOS/MacOS users are not given the choice for phase-2 protocols
since the detailed configuration for the network is provided by the
configuration profile crafted by the network administrator.
Android (AOSP) before V10. All Android versions up to version 10
have the option of voiding or skipping the CA certificate validation
for phase 1 (P1-1), which remains a notable threat to the wireless
connection security. More specifically, Android 6 or earlier has the
CA certificate option “Unspecified” by default, while Android 7 and
versions onwards remove this choice but add the “Do not validate”
option. There is a warning on the insecure connection during the
initial configuration if CA certificate is not validated. However, there
are no warnings during subsequent connections, and there is also no
warning when a suspicious CA certificate is received (P1-2). Ver-
sions before Android 10 allow the phase-2 authentication protocol
to be left blank (P2-1), giving the attacker chance to manipulate the
protocol selection.
Android (OEM). It is well known that Android has been suffering
from the notorious fragmentation problem—due to the openness
of AOSP (Android Open Source Project), Android OEM versions
deployed by different device manufacturers have seen a great variety
of unique features and functionalities. The security issues caused by
fragmentation have been raised in a previous study [70]. Thus, we
conduct an investigation into 9 popular Android phones available in
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the market. They are from 8 distinct phone manufacturers, including
Samsung, Xiaomi, Huawei, Vivo, Oppo, Lenovo, Smartisian and
OnePlus.

We have found vulnerabilities similar to those in Android AOSP,
with a few exceptions. Oppo Android 7 and Vivo Android 8 provide
the option of “Unspecified” for CA certificate, which has been fixed
since Android 6 in AOSP. These two brands/versions, together with
Samsung Android 9 and Lenovo Android 9, fail to provide any
warning against the initial insecure configurations. All our findings
have been reported to the manufacturers (see Section 4.4).

6 ASSESSING USER SUSCEPTIBILITY
A study by CISCO in 2020 [28] shows that manual configuration
remains the dominant means for configuring enterprise network con-
nections, indicating that weaknesses related to certificate validation
UIs have profound impacts on users’ wireless security in practice.
Due to the wider discrepancies in security awareness levels, rich
compatibility of versions and types of devices, these weaknesses
raise complications that possibly lead to attacks in reality. In this
section, we aim to better understand the user susceptibility to weak-
nesses in certificate validation UIs through two user-related studies,
from the perspectives of both organizations and users.

6.1 Examining Universities’ Wi-Fi Guidelines
The complexity of the configuration process could cause misinter-
pretations of enterprise network administrators. Thus, the Wi-Fi
connection guidelines made by them are an ideal source that reflects
how they interpret the security of WPA Enterprise. Therefore, we
conduct a study regarding the security of the guidelines provided
by universities. To find publicly accessible guidelines, we resort to
the websites of universities. For each of the top 200 universities
listed in QS World University Rankings [50], we query Google with
“wifi setup site:(university domain name)” to retrieve the web pages
and/or PDF documents that contain Wi-Fi configuration guidelines.
We review them to identify the weaknesses discussed in this paper.

Among the 200 universities, 176 of them have made their guide-
lines publicly available. Through reviewing those available ones, we
find that nearly half of the universities have documented insecure
configurations, as is shown in Figure 8. The mistakes found from
the insecure guidelines are similar. For Windows, iOS and MacOS,
users are instructed to skip the server and CA certificate validation
when they are prompted with “Continue (to connect)”. The insecure
guidelines miss reminding the user of clicking “Show the details”
and checking both certificates before proceeding to connect. In ad-
dition, for Windows, the majority of the insecure guidelines have
instructed the users to deselect the option of “Verify the server’s
identity by validating the certificate”. For Android, many guidelines
tend to neglect CA certificate validation and instruct the users to
choose “Unspecified” or “Do not validate”, instead of “Use system
certificate”.

6.2 A Practical Study on Attack Feasibility
To study the evil twin attacks in real-world enterprise networks, we
conduct a two-step confined experiment within ByteDance (an IT
company with over 50k employees), prior and after the implementa-
tion of Wi-Fi security enhancement. Our experiment simulates an
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attack that aims to harvest the employees’ login credentials, through
a stealthily deployed evil twin in a spot where the mobility of em-
ployees is high. Even most employees have relevant experience and
expertise in computer networking in this company, the success of
the evil twin attack implies its high feasibility and effectiveness.

6.2.1 Ethical Considerations. We have given careful ethical
considerations on the user-related studies in our work, aiming to
minimize the potential impact to the participants. Prior to the experi-
ments, we obtained clearance from the company’s legal department.
The study and experiment were guided by them, ensuring compli-
ance with privacy laws. We have carefully designed our experiment
to be responsible and harmless. Any data collected throughout the
experiment only serves the purpose for exploring the feasibility of
the evil twin attack, and for the internal evaluation of the security
vulnerabilities within the company. The study serves a part in the
optimal goal to enhance the overall network security within the com-
pany. Upon completion, the company debriefed the participants with
security advice (e.g., adopting secure configurations), and erased all
collected data.

6.2.2 Evil Twin Experiment prior to Security Enhancement.
We deploy the evil twin at the entrance of an office belonging to the
R&D department to cover a sufficient number of employees. The
setup of the evil twin follows the system configuration detailed in
Section 4.1. Because PEAP is supported by the company wireless
network (whose default protocol is PEAP-MSCHAPv2), we config-
ure the evil twin to support only PEAP-GTC so that it can trigger
phase-2 protocol downgrading (see week point #3 in Section 4.3.2)
to obtain the user’s credentials in plaintext. The evil twin is config-
ured to automatically initiate the attack once the employees move
into the effective range. To confine the impact from this study, we
restrict the experiment time to a total of continuous 40 minutes.

During this experiment period, there are around 400 employees
in the vicinity. The evil twin manages to collect passwords from the
mobile devices of 166 employees without being noticed by any of
them. This alarming number during the short period raises an alert
on the severity of the security threat from the evil twin attack. We
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note that we have thoroughly and strictly followed the responsible
conduct detailed in Section 6.2.1. The collected information has
been handled by the dedicated specialists from the company, and the
authors have no access to these credentials. The “victims” have been
debriefed by the specialists, after the completion of the experiment.

We have also requested the specialists to investigate the causes
of these leakages. Based on their feedback, we summarized the fol-
lowing findings. For “victims” using Android devices, the leakage is
because they have chosen not to validate the CA certificate in their
initial connection to the company network, prior to our experiment.
Therefore, the credentials are automatically sent to the evil twin as
elaborated in our Observation #1 (see Section 4.2). For “victims” us-
ing iOS, they are prompted with a request to trust the fake certificate
when their devices are connected with the evil twin. As most of them
choose to trust the certificate, their credentials are automatically sent
to the evil twin.

6.2.3 Evil Twin Experiment after Security Enhancement. In
response to the results of our initial experiment, the company has im-
plemented security countermeasures, including replacing PEAP with
EAP-TLS as the default protocol, eliminating insecure options from
their BYOD apps, conducting network security training through
seminars and courses. To evaluate the effectiveness of those coun-
termeasures, we conduct a similar experiment one year later after
the initial one. We deploy the evil twin at the main entrance located
in one of the company’s office buildings for 6 hours which covers
the morning rush hour. Around 8,000 connection attempts from over
1,400 unique devices are captured. The simulated attack manages to
collect 14 distinct credentials in plaintext during the experiment.

Apparently, the overall Wi-Fi security has been drastically im-
proved over the year, with much fewer employees affected by the
attack. Nevertheless, it still has not been completely eliminated even
after the security countermeasures are implemented, suggesting its
high susceptibility. The specialists attributes the 14 compromised
credentials to the backward compatibility of the earlier devices/OSes.
They either do not support EAP-TLS or still allow insecure manual
certificate validation settings.

7 DISCUSSION
7.1 Mitigation
Our studies in Section 6 suggest that it is nearly impossible to com-
pletely eradicate the threat from evil twin attacks in large organi-
zations, due to the complexity such as the diversity of devices, the
continuously maintained backward compatibility, and the evolving
functionality and interoperability. In this section, we discuss possi-
ble countermeasures to mitigate the security threats and reduce the
potential attack surface.
Securing Network Configuration from OS providers. We rec-
ommend the OS providers to eliminate the insecure configuration
options, such as the option of disabling certificate validation or se-
lection of weak phase-2 authentication protocols including PAP and
GTC. They should also maintain consistent security mechanisms in
both of their certificate validation UIs (e.g., Android Settings) and
programmatic APIs (e.g., android.net.wifi.WifiManager).
Take the patch shown in Figure 9, which is Google’s patch [48] for
our reported CVE-2020-0201, as an example. The user should not

1 diff --git

2 a/src/com/android/settings/wifi/WifiConfigController.java

3 b/src/com/android/settings/wifi/WifiConfigController.java

4 index 48c9e54..27ac69d 100644

5 --- a/src/com/android/settings/wifi/WifiConfigController.java

6 +++ b/src/com/android/settings/wifi/WifiConfigController.java

7 ...

8 @@ -662,9 +666,6 @@

9 switch(phase2Method) {

10 - case WIFI_PEAP_PHASE2_NONE:

11 - config.enterpriseConfig.setPhase2Method(Phase2.NONE);

12 - break;

13 case WIFI_PEAP_PHASE2_MSCHAPV2:

14 config.enterpriseConfig.setPhase2Method(Phase2.MSCHAPV2);

15 break;

16 ...

Figure 9: Patch for WifiConfigController.java

be presented with the option NONE when choosing the phase-2 au-
thentication protocol. Additionally, for the certificate validation, the
domain of the authentication server should be made compulsory. For
the adoption of password-based phase-2 protocols, PAKE (Password-
Authenticated Key Agreement) authentication methods [47, 52]
should be used to provide better security.

Furthermore, access to security critical assets such as the Wi-Fi
KeyStore should be rigorously controlled so that no unauthorized
manipulation is allowed. For example, the patch for our reported
vulnerability A-150500247 fixes WifiConfiguration.java,
as shown in Figure 10. It creates different aliases for suggested and
the previously saved Wi-Fi configurations respectively to avoid the
unauthorized manipulation on the saved ones.

WPA supplicants should also be implemented with strategies
for mandatory certificate validation and displaying conspicuous
warnings to users once suspicious CA certificate are received. Their
certificate validation UIs are recommended to follow the design in
web browsers’ certificate UI [24, 63], which displays a conspicuous
padlock icon and actively blocks suspicious access points. Unlike in
the web browsers where the URLs are associated with the SSL/TLS
certificates, the network SSIDs and the certificates are not correlated
in Wi-Fi networks, rendering it a challenge to effectively detect the
suspicious CA certificates. One possible solution is to use the trust-
on-first-use method to pin the certificate upon the initial connection
and issue warnings when the certificate fingerprint mismatches the
saved one.
Securing Network Configurations on User Devices. To prevent
their employees from crafting insecure Wi-Fi configurations, enter-
prises should provide standardized BYOD Wi-Fi configuration ap-
plications, such as the Eduroam Configuration Assistant Tool (CAT)
used in universities. In such applications, the developers should en-
sure the correct certificate validation and the secure settings of the
EAP methods and phase-2 authentication protocols. In addition to
the more secured EAP-TLS, when implementing EAP-TTLS and
PEAP protocols, MSCHAPv2 should be mandated as the phase-2
authentication protocol to provide better password secrecy. Note that
the Wi-Fi access is configured through configuration profiles, the
enterprise must ensure such secure settings are correctly specified
when generating the profiles.
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1 diff --git

2 a/wifi/java/android/net/wifi/WifiConfiguration.java

3 b/wifi/java/android/net/wifi/WifiConfiguration.java

4 index ed41642..88f2bb2 100644

5 --- a/wifi/java/android/net/wifi/WifiConfiguration.java

6 +++ b/wifi/java/android/net/wifi/WifiConfiguration.java

7 ...

8 @@ -2113,15 +2113,23 @@

9 - return trimStringForKeyId(SSID) + "_" + keyMgmt + "_" +

trimStringForKeyId(enterpriseConfig.getKeyId(current != null

? current.enterpriseConfig : null));

10 + String keyId = trimStringForKeyId(SSID) + "_" + keyMgmt + "_" +

trimStringForKeyId(enterpriseConfig.getKeyId(current != null

? current.enterpriseConfig : null));

11 + if (!fromWifiNetworkSuggestion) {

12 + return keyId;

13 + }

14 + return keyId + "_" + trimStringForKeyId(BSSID) + "_" +

trimStringForKeyId(creatorName);

15 ...

Figure 10: Patch for WifiConfiguration.java

7.2 Implication on Future Research
Our findings in this work shed light on the importance of securing
the emerging non-browser user-agents, e.g., IoT devices, for their
certificate validation that involves error-prone human interactions.
We have identified three research directions following this work.

Comprehensive Taxonomy of Certificate Validation Weaknesses.
As discussed in Section 3.2, we reveal the need for taking into
consideration the UI/UX design to secure a certificate validation pro-
cess. This complements existing studies that mainly target the pro-
grammatic interfaces. A comprehensive taxonomy of the certificate
validation weakness can subsequently encourage more systematic
security assessment in the existing and future certificate validation
schemes. Furthermore, it can benefit industry standards of secure
use of SSL/TLS, e.g., NIST.SP.800-52 [42] and FIPS.140-2 [43].

Designing Secure Certificate Validation Involving Human Fac-
tors. Our work also calls for the expertise from researchers of human-
centric security. We find that current certificate validation implemen-
tations trade off security for usability—the by-default options (see
Section 4.2) save the users from specifying a server domain or main-
taining a client certificate, but downgrade the security. We envision
a secure yet user-friendly design of GUIs to facilitate the users’
decision making in certificate validation processes.

Rigorous Analysis on Certificate Validation Implementations.
Another possible research direction is on the rigorous analysis of
the certificate validation implementations, especially when humans
are in the loop. Considering the diverse combinations of available
settings/options among various software versions, and the complex-
ity in usage scenarios (e.g., initial and subsequent connections) and
attack scenarios, it is infeasible to rely on manual testing or empirical
studies for a thorough analysis. Thus, future work can utilize and
extend the existing automated formal verification techniques to iden-
tify the potential security weaknesses/vulnerabilities in certificate
validation.

8 RELATED WORK
To our best knowledge, security vulnerabilities in WPA Enterprise
have not been systematically and comprehensively studied. Vulner-
abilities found in our work are closely related to flawed certificate
validation in the PKI which is extensively studied in the context
of wireless authentication (for example, Wi-Fi authentication) and
encrypted secure communication (i.e., SSL/TLS, HTTPS, etc.).

8.1 Analysis on Wi-Fi Authentication
Authentication Attacks. Various security protocols and standards
have been developed to secure the wireless access, including WEP,
WPA, WPA2 and WPA3. Despite providing better security compared
to WEP, the state-of-the-art WPA standards have been continually
found vulnerable [54, 66]. Cassola et al. [16] presented a novel and
practical attack against WPA Enterprise, leveraging the combina-
tion of active jamming, design deficiencies in wireless management
user interfaces and insecure trust model for wireless authentica-
tion. Vanhoef et al. [67] presented a MITM attack by reinstalling
an already-in-use key during the 4-way handshake in WPA2 which
leads to potential hijack of the user’s Wi-Fi connection. In their latest
work, Vanhoef et al. [68] conducted a systematic evaluation on the
Dragonfly handshake protocol, and found vulnerabilities that result
in downgrade, DoS attack and side-channel password leakage.

Compared to the existing works which focus on identifying vul-
nerabilities in the cryptosystem of WPA standards, we focus on the
weaknesses originated from the certificate validation UIs. To the best
of our knowledge, only several works in the literature studied WPA
Enterprise in a systematic manner. Bartoli et al. [6] investigated the
prevalence of WPA2 Enterprise vulnerabilities arises from incor-
rect client devices. Brenza et al. [13] demonstrated a similar MITM
attack as discussed in our paper. The attack exploited the default
settings in the client devices such that the user connection is hijacked
without necessity of cracking the user password. In comparison, our
work utilizes the adaptive settings on the client device to launch the
attack, which can further retrieve the user password in plaintext.
Defences in Wi-Fi Authentication. Vanhoef et al. recommended
that access points should disable WPA-TKIP, which is known as a
weak encryption mechanism [65], to avoid the downgrade attack [66].
They also proposed countermeasures against key reinstallation at-
tack [67], including disabling the reinstallation of already-in-use
keys and implementing single-use keys during handshakes. Sev-
eral works [53] have proposed secure device pairing to prevent the
evil twin attacks, using properties in or around the communicating
devices to establish their identities.

8.2 Certificate Validation in Web Apps
Analysis on HTTPS. Numerous prior works [2, 22] have revealed
the certificate validation vulnerabilities. Kumar et al. [37] presents
Zlint, a tool to systematically analyze the correctness of certificates
issued by CAs. They examined over 240 million browser trusted
certificates and identified an error rate of 0.02% which could lead to
failed certificate validation. With a focus on the chain of trust (i.e.,
the X.509 certification path), Chuat et al. [17] analyzed the exist-
ing solutions to certificate revoking problems in HTTPS, including
latency, availability and privacy.
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Analysis on SSL/TLS. As the cornerstone for higher level commu-
nication protocols (e.g., HTTPS), SSL/TLS implementations have
been extensively analyzed [14, 19, 32, 39]. Among them, a recent
study from Tian et al. [64] proposed a differential testing approach
named RFCcert to examine the SSL/TLS certificate validation im-
plementations, based on the standard RFCs. They deployed RFCcert
to test 6 popular SSL/TLS implementations and 3 web browsers.

8.3 Certificate Validation in Mobile Apps
Identifying Certificate Validation Vulnerabilities. With ubiquitous
adoption of encrypted channels using PKI, the security of commu-
nication on mobile applications hinges on the correct certificate
validation in particular. Poorly designed APIs and flawed SSL imple-
mentations have been found to be the main source for the certificate
validation vulnerabilities [23, 27, 46]. More recently, Liu et al. [40]
investigated a particular SSL vulnerability that originated from the
error-handling code in the hybrid mobile apps which uses both native
Android UIs and web UIs. This vulnerability will enable the contin-
ued communication regardless of SSL certificate validation failures.
Stute et al. [57] analyzed the security and privacy of Apple Wireless
Direct Link (AWDL) and its integration with BLE. The authors
identified potential MITM attack of AirDrop service in around 40%
of the surveyed users. In addition to the listed works on certificate
validation in web and mobile apps, there are works proposing attacks
on the cryptosystem of SSL/TLS [5, 12], causing broken certificate
validation in PKI.
Defenses in Certificate Validation. Various mechanisms have been
proposed against the failed certificate validation [7–9]. Recently,
Nguyen et al. [45] developed FixDroid which is an IDE plugin
to help developers adhere to best security practices, and reduce
certificate validation vulnerabilities.

8.4 Exploitation of User Interfaces
The attacks presented in our work exploit the vulnerabilities residing
in the user interfaces where security related information fails to
be fully understood or aware by the users. In particular, an evil
twin abuses the legitimate SSID to deceivingly appear as a benign
access point to the victim user. Similarly, a number of browser-based
attacks such as clickjacking [3, 31, 69] and phishing [33] trick user
into clicking the malicious counterparts bearing a similar URL or
name. To mitigate the security impacts from the attacks, various
countermeasures and detection techniques have been proposed and
evaluated for clickjacking [15, 31] and phishing [29, 58] respectively
in the literature.

9 CONCLUSION
In this work, we present a comprehensive study on the effectiveness
of certificate validation UIs in WPA supplicants. Our analysis has
covered a wide variety of 13 mobile devices and 16 versions of the
mainstream OSes. We have revealed that the majority of WPA sup-
plicant implementations are susceptible to evil twin attacks due to
deficient configuration interfaces and inconspicuous security warn-
ings in the certificate validation UIs. We have investigated the root
causes of the vulnerabilities in Android, and identified four CVEs
and one Google-confirmed vulnerability. We have further confirmed
users’ susceptibility to such weaknesses through two user-related

studies. We have also recommended mitigation to minimize the
threats due to evil twin attacks. To the best of our knowledge, this
work is the first of its kind in the literature. We intend to raise the
awareness towards the easily-neglected enterprise security threat
originated from the insecure certificate validation UIs.
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