Identifying Privacy Weaknesses from Multi-party Trigger-action
Integration Platforms

Kulani Mahadewa Yanjun Zhang Guangdong Bai"
School of Computing, School of ITEE, School of ITEE,
National University of Singapore, University of Queensland, Australia ~ University of Queensland, Australia
Singapore yanjun.zhang@ugq.edu.au g.bai@ugq.edu.au

kulani41@comp.nus.edu.sg

Lei Bu Zhiqiang Zuo Dileepa Fernando
State Key Laboratory for Novel State Key Laboratory for Novel School of IT and Computing,
Software Technology, Software Technology, Sri Lanka Technological Campus,

Nanjing University, China
bulei@nju.edu.cn

Zhenkai Liang
School of Computing,
National University of Singapore,
Singapore
liangzk@comp.nus.edu.sg

ABSTRACT

With many trigger-action platforms that integrate Internet of Things
(IoT) systems and online services, rich functionalities transparently
connecting digital and physical worlds become easily accessible
for the end users. On the other hand, such facilities incorporate
multiple parties whose data control policies may radically differ
and even contradict each other, and thus privacy violations may
arise throughout the lifecycle (e.g., generation and transmission) of
triggers and actions. In this work, we conduct an in-depth study
on the privacy issues in multi-party trigger-action integration plat-
forms (TAIPs). We first characterize privacy violations that may
arise with the integration of heterogeneous systems and services.
Based on this knowledge, we propose TAIFU, a dynamic testing
approach to identify privacy weaknesses from the TAIP. The key
insight of Tarru is that the applets which actually program the
trigger-action rules can be used as test cases to explore the behav-
ior of the TAIP. We evaluate the effectiveness of our approach by
applying it on the TAIPs that are built around the IFTTT platform.
To our great surprise, we find that privacy violations are prevalent
among them. Using the automatically generated 407 applets, each
from a different TAIP, TAIFU detects 194 cases with access policy
breaches, 218 access control missing, 90 access revocation missing,
15 unintended flows, and 73 over-privilege access.

*Guangdong Bai is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA °21, July 11-17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8459-9/21/07...$15.00
https://doi.org/10.1145/3460319.3464838

Nanjing University, China
zqzuo@nju.edu.cn

Ingiriya Road, Padukka, Sri Lanka
dileepaf@sltc.ac.lk

Jin Song Dong
School of Computing,
National University of Singapore,
Singapore
dcsdjs@nus.edu.sg

CCS CONCEPTS

« Security and privacy — Web application security;

KEYWORDS
Internet of Things, Privacy, Testing

ACM Reference Format:

Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhiqiang Zuo,
Dileepa Fernando, Zhenkai Liang, and Jin Song Dong. 2021. Identifying
Privacy Weaknesses from Multi-party Trigger-action Integration Platforms.
In Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 21), July 11-17, 2021, Virtual, Denmark. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3460319.3464838

1 INTRODUCTION

Various trigger-action services, such as IFTTT [27], Zapier [44] and
Microsoft Flow [35], add further capability to integrate the Internet
of Things (IoT) systems with online services. We call these new
multi-party facilities trigger-action integration platforms (TAIPs). A
TAIP consists of the trigger-action service, the participating trigger
service and action service, and the interfaces provided by them to
support applet creation and execution. With the flexible approaches
provided by various TAIPs, new functionalities like “if the user is
tagged in a photo on Facebook, then blink the Philips Hue bulb in the
living room” can be easily realized with almost no programming skill
required. The cores of the TAIPs, i.e., the trigger-action services,
are on the rise in the current internet market. According to recent
statistics [28], IFTTT, the most popular trigger-action service, has
19 million users, more than 700 services integrated and over 90
million active connections as of January 2021.

Same as in all other IoT-related systems, security and privacy
of the TAIPs should be a perennial concern. Previous studies have
focused on the individual components of trigger-action applications,
including IoT devices [10, 18, 24, 32, 37], application frameworks [3,

https://doi.org/10.1145/3460319.3464838
https://doi.org/10.1145/3460319.3464838

ISSTA °21, July 11-17, 2021, Virtual, Denmark Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhigiang Zuo, Dileepa Fernando, Zhenkai Liang, and Jin Song Dong

7,16, 17, 23, 36], communication and control [8, 13, 33, 34, 47], and
trigger-action rules [4, 5, 9, 31, 40, 43, 45]. Numerous issues on data
flows, code integrity and platform availability have been identified
and fixed thanks to their efforts.

In this work, we study the privacy preservation of the multi-party
TAIP from an integration perspective. We focus on the weakness
in the TAIP implementations that may lead to privacy violations
when they integrate heterogeneous parties to fulfill particular func-
tionalities. A typical case of such violations is the cross-party policy
infringement, which occurs when the data access control policy
enforced by one party is infringed by others intentionally or unin-
tentionally. For example, a user can upload his file to Dropbox with
a restriction of sharing within a group of friends, and the file is well
protected under Dropbox’s access control mechanism. Nevertheless,
most of the current trigger-action services simply grab the file and
send it to the action service, once any applet declares to use “file
uploaded to Dropbox” as a trigger, regardless of the user’s intention.

One may argue that the user should be responsible to control
the flow of their private information. For example, Facebook’s data
policy says “When you (the users) choose to use third-party apps,
websites, or other services that use, or are integrated with, our Products,
they can receive information about what you post or share” [14].
The challenge is that even though the users have been aware of
the flow of their private information from one service to another,
existing TAIPs fail to provide users with complete control over
their own data. For example, our study finds that after pulling a file
from a trigger service (e.g., a photo taken by an Android device),
IFTTT makes a copy on its server and exposes a URL to the action
services (e.g., a smart device or a social media service). The copy
is stored permanently and there is no way for the user to delete
it. More seriously, even if the original file residing in the trigger
service is deleted, IFTTT’s copy remains accessible through the
URL. Unfortunately, we find that such misunderstandings on the
shared responsibility are not uncommon.

The cause for these issues are at least twofold. First, the parties
involved in a TAIP belong to different manufacturers and service
providers. Each individual party may have applied policies that are
sufficient in their context, but these policies may be violated by
others due to misunderstandings or even complete unawareness.
Second, a single trigger-action service usually supports hundreds
of online services/IoT devices available in the market. The num-
ber of combinations can easily reach thousands, and each of them
may takes numerous trigger events as inputs. For instance, IFTTT
supports 485 trigger services, 414 action services, which results in
200,790 service-level possible ways of integration without even con-
sidering the event-level combinations. As a result, it is challenging,
if not impossible, for the trigger-action service provider to have
comprehensive end-to-end testing.

We propose a black-box testing approach to identify weaknesses
that may lead to privacy violations from the TAIP. We develop our
approach into a trigger-action integration platform fuzzer (Tarru).
Tarru adopts a two-phase workflow similar to that in compiler
testing—it first generates the applets (also known as the trigger-
action programs [45] and recipes [40] in the literature) that are the
inputs to the trigger-action applications (analogous to the programs
to a compiler under testing), and then generates triggers to drive

the executions of the applets (analogous to the program inputs to
the compiler-generated executable).

The first phase uses a technique that consists of a protocol infer-
ence to identify undocumented interfaces for application creation,
and a natural language processing (NLP)-based corpus creation to
produce expected data values for applet configuration. It aims to
explore service combinations and data flows as many as possible.
The second phase simulates the trigger events with another set of
test cases generated using a hybrid technique including generation
based on extracted protocols and test case mutation. The behavior
of the trigger-action applications in response to the applet execu-
tion is monitored and checked against a set of pre-defined rules for
weakness detection.

To characterize the privacy weaknesses in real-world TAIPs,
we have tested TAIFU against the TAIPs that comprise the IFTTT
and several widely used online services, e.g., Instagram, Twitter,
Android Photo and Facebook. TAIFU generates applets for 407 TAIPs
by synthesizing the trigger/action types from 52 services that we
find may handle privacy-sensitive data. It has identified 194 cases
with access policy breaches, 218 access control missing, 90 access
revocation missing, 15 unintended flows, and 73 over-privilege
access.

Contributions. To summarize, we make the following main con-
tributions in this paper.

e We characterize the privacy weaknesses in TAIPs. To the
best of our knowledge, this is the first study that explores
the fundamental cause of the continuously reported privacy
issues in trigger-action applications [4, 40, 43].

e We propose TAIFU, a novel approach of identifying privacy
weaknesses out of TAIPs. TAIFU uses the automatically gen-
erated applets as inputs to activate data flows in the TAIPs
as many as possible.

e We have applied TAIFU to characterize the privacy weak-
nesses in TAIPs that take IFTTT as the core trigger-action
service. It has found multiple privacy weaknesses. We release
our implementation and experiments online [41].

2 MULTI-PARTY TAIPS AND A RUNNING
EXAMPLE

In this section, we summarize a generic architecture of TAIPs which
shows the integration of multiple services and the data flows among
them. We also present a running example that is used later to explain
the privacy violations in Section 3 and our approach in Section 4.

2.1 Trigger-action Integration Platforms

Figure 1 shows a generic representation of the architecture and
workflow of a trigger-action application. It is summarized from a
manual study on the IFTTT-based TAIPs, with a focus on the docu-
mentations, and reverse engineered workflows of several mostly
integrated services. A TAIP typically involves three parties, i.e., the
trigger-action platform, the trigger system, and the action system.
In the following we brief them.

Trigger-action Platform. The trigger-action platform provides
interfaces for the services and devices to interact with each other
for automation tasks. It consists of two main components, i.e., the
trigger-action service (e.g., a cloud service) and the trigger-action

Identifying Privacy Weaknesses from Multi-party Trigger-action Integration Platforms

Trigger-Action Integration Platform (TAIP)
o

~Doau oAuh

\ Trigger Action
APL Channel Channel APT

Trigger Service) IF trigger THEN action@ Q Acti

n Service
Trigger Event i “E\ Trigger-Action Service) Actuation
i Execution(8)
it ® { Metadata Is! ®
-
e of @
n Creation . Applets B
o

Trigger-Action Client Action Client/IoTs

Trigger-Action Platform —»|«—— Action System ——

Trigger Client/IoTs
<«——Trigger System

ENJUEEIF a photo is uploaded with a hashtag on Facebook, THEN create a post on Blogger ‘

Figure 1: A Generic Architecture of the Trigger-Action Application
Constructed using Interfaces Provided by the TAIP

client (e.g., a mobile or a web client). The trigger-action service
facilitates channels for the online trigger services and action ser-
vices to communicate with each other. The interfaces between any
two services are subject to the pre-established agreements between
their providers.

Trigger System and Action System. A third-party system can be
integrated with the trigger-action platform to initiate triggers (i.e.,
the trigger system), complete actions (i.e., the action system), or both.
Similar to the trigger-action platform, each system consists of a
cloud service and a client (e.g., a device, a mobile or a web client).
The trigger service initiates the automation tasks and the action
service completes them.

2.2 A Running Example

Given an automation task “IF a photo is uploaded with a hashtag on
Facebook, THEN create a blog post on Blogger”, the TAIP takes the
following three steps to realize it.

Step 1: Service Connection. The user authorizes the trigger-action
service to connect and communicate with the selected trigger ser-
vice (i.e., Facebook) and action service (i.e., Blogger) through the
trigger-action client (step (D) in Figure 1).

Step 2: Applet Creation. An applet is a small conditional program
which specifies “IF this trigger happens, THEN fire that action”. It
involves a pair of events selected from the connected services as
the trigger and the action (step (2)). The behavior of an applet
can be customized according to the user’s preferences through
parameters given to the chosen events. We refer to this process as
event configuration in the rest of the paper. In an applet, a set of
special arguments called ingredients are used to carry trigger data.
If the ingredients are provided as arguments when configuring the
action, the action service can receive the trigger data. To create the
applet in our example, the user selects the trigger of “New photo
post by you with a hashtag” from Facebook and the action of “Create
a post” from Blogger. The ingredients of the trigger include the
photo and title/body of the Facebook photo post.

Step 3: Applet Execution. The created applet can be executed by
initiating a trigger event at the trigger client (step (3)). In our exam-
ple, when the user uploads a photo post with a hashtag through
the Facebook client, the Facebook service receives a trigger. It then
informs the trigger-action service that the trigger event has oc-
curred (step (9)). The applet that is associated with the trigger event

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Table 1: GDPR Principles of Personal Data Processing (an excerpt from
Art. 5 GDPR [20])

Principles Requirements related to this work (“Personal data shall be:”)

P1| Lawfulness, fairness and | “processed lawfully, fairly and in a transparent manner”
transparency

P2| Purpose limitation “collected for specified, explicit and legitimate purposes and
not further processed in a manner that is incompatible with

those purposes”

P3| Data minimisation “limited to what is necessary in relation to the purposes”

P4| Accuracy “accurate, ..., erased or rectified without delay”

P5| Storage limitation “kept no longer than is necessary for the purposes”

P6 | Integrity and confidentiality “processed in a manner that ensures appropriate security”

would be executed by the trigger-action service (step (5)), which
then sends the defined action actuation (including the data body if
any is received from the trigger service) to the action service (step
(®). Inresponse, the action service completes the action (i.e., create a
post”), and pushes the update to the action client (i.e., Blogger) (step
(). We note that the trigger-action client also receives the execu-
tion log, which contains the applet identity, the execution status,
and the trigger data (e.g., texts and URLS) received from the trigger
service (step (®).

3 PRIVACY VIOLATIONS IN TAIP

In order to characterize the privacy weaknesses in the multi-party
TAIPs, we seek to explore possible channels that sensitive informa-
tion may exfiltrate. In this section, we discuss the threats against
the user privacy (Section 3.1), and then identify sensitive flows (Sec-
tion 3.2) and possible privacy violations (Section 3.3).

3.1 Threat Model

The security threats caused by malicious or compromised enti-
ties [17], malicious applets [4, 9] and undesirable rule chaining [43,
45] have been studied in the literature. In this work, we explore
the user data protection by the service providers as data processors
and data controllers. This is motivated by a recent trend that many
countries start imposing strict administrative procedures, such as
the EU General Data Protection Regulation (GDPR) [21]. This has
resulted in a significant development of privacy policy regulations
in the domain of mobile applications [22]. The user data protec-
tion issues in TAIPs deserve equal or more attention due to their
cross-party nature—whenever data transmission is involved, the
regulations have highly strict requirements.

Since there is no existing taxonomy of privacy violations in a
TAIP that can be used by our work, we refer to EU GDPR [21] for a
guideline when we define privacy violations. GDPR regulates the
protection of user data by imposing legal obligations on every data
controller (i.e., all parties in our architecture except the user), as
shown in Table 1. In the current design of IFT TT-based TAIPs, the
user is only prompted to authorize the service connection (see step
1 in Section 2.2). Disclosing privacy policy is not compulsory at this
stage, although many service providers like Twitter may inform
the user of the implications. During the process of applet creation
and execution, the user is not acknowledged the contents of the
data to be associated with the trigger events, and the purpose and
means of processing the data. This actually forwards to the user the
accountability of any privacy violations (e.g., access control policy
breaches) happening during/after the execution of the applet. We

ISSTA °21, July 11-17, 2021, Virtual, Denmark Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhigiang Zuo, Dileepa Fernando, Zhenkai Liang, and Jin Song Dong

thus treat such scenarios where service providers fail to provide
appropriate countermeasures as weaknesses.

3.2 Sensitive Data

The data flows can be categorized into explicit and implicit flows [11,
30]. The “if-then” paradigm of applets is a typical control flow
based information flow, i.e., an implicit flow. Such type of flows
are pervasive in all applets, such that an action always indicates
the occurrence of the corresponding trigger. A previous study by
Zhang et al [45] has explored the privacy issues arising due to the
chaining of applets. In this work, we aim to examine the control
mechanisms of the service providers. Therefore, we exclude implicit
flows out of our scope.

We then put our focus on the cross-party data flows that the data

is sourced from the trigger system and transmitted to other two ser-
vices when an applet is executed. We instrument the network APIs
in the mobile clients and deploy network proxies between clients
and services, and capture the network traffic while executing 30
most installed IFTTT applets. By manually analyzing the captured
traffic, we have identified two types of trigger data as the critical
assets that may raise privacy concerns of the users.
Textual Contents. These contents are considered sensitive as they
may involve users’ social media posts/tweets, date and time, and text
description of the devices/services that may reveal their identities.
URLs. The applets may involve users’ private photos, videos and
other objects. Due to their big sizes, they are not directly included
in the trigger data; instead, the URLs linking to them are attached.
Therefore, the URLs are considered sensitive.

3.3 Types of Privacy Violations

With the sensitive data types identified, we then investigate how
each party in the TAIP may mismanage the sensitive data. Based
on the GDPR principles, we identify five types of privacy violations
in the context of multi-party TAIPs.

V1: Access Control Policy Breach (rel. P6). This refers to the
violation that the access control policy for the trigger data, defined
by the user at the trigger service, is altered by the TAIP during
the transmission of the trigger data to either the trigger-action
service (at step (@ in Figure 1) or the action service (at step (o).
This violation may lead to personal data being unintentionally
shared on a service with public audience.

Example. Consider the automation task in our running example.
After the user uploads a private photo on Facebook, the trigger-
action service obtains a publicly-accessible URL of the photo, rather
than a URL protected with authentication.

V2: Lack of Access Revocation (rel. P4 and P5). This refers to the
violation that once the data reaches the trigger-action service or
action service, the user loses all control over it. In consequence, it
may be permanently stored by them unless they proactively delete
it. Trigger-action services like IFTTT request the user to grant
them the access to the trigger data, using multi-party authorization
protocols like OAuth. We remark that security mechanisms such as
OAuth token revocation [25] must be employed to enable the user
to control over the trigger data.

Example. After the user deletes the photo on Facebook, the URL

obtained by the trigger-action service or the action service remains
accessible, and there is no any interface for the user to revoke it.
V3: Unintended Data Flow (rel. P1 and P2). This refers to the
violation that the trigger-action service accepts and retrieves trig-
ger data from the trigger service, out of the user’s intention and
expectation. This may lead to personal data being unintentionally
shared on another service.

Example. The applet is executed when the user uploads a video (in-
stead of a photo) on Facebook, and the trigger-action service re-
trieves the video and shares it on Blogger.

V4: Lack of Fine-grained Access Control (rel. P1 and P6). This
violation occurs when a trigger service or an action service provides
fine-grained privacy configuration options, but the TAIP fails to
retain them. The trigger-action service therefore does not provide
the user with the same configuration options, upon the applet
creation. This may lead to access control being altered or even
downgraded when cross-party data transmission occurs.
Example. Facebook provides privacy configurations of “private”
and “public” to its users. However, when creating the applet, the
TAIP does not provide options for the user to restrict the trigger
data sharing to only public photos. Hence, when the user uploads a
private photo on Facebook, the TAIP shares it on Blogger.

V5: Violation of the Least Privilege Principle (rel. P2 and P3).
This refers to the violation that trigger-action service acquires more
trigger data from the trigger service than the minimum required to
perform the actuation at the action service. In particular, upon the
event configuration, the user specifies which trigger data (ingredi-
ents) should be transmitted to the action service. However, at the
execution time, the trigger-action service may extract extra data.
This may lead to the extra data being shared out.

Example. The action event is configured to receive the title of the
Facebook photo post. However, during the execution, the trigger-
action service acquires the entire photo in addition to the title.

4 APPROACH

In this section, we present our approach. Our discussion takes
IFTTT-based TAIPs as an example, but it is applicable in other
TAIPs based on other trigger-action services.

4.1 Challenges and Approach Overview

The core idea of TAIFU is to construct and execute applets as the test
cases to trigger possible data flows among involved entities in the
TAIP. The generated data flows are then analyzed to identify privacy
violations. We target to automate this process, so the following
challenges have to be alleviated.

e Challenge 1: Handling Login and Authorization GUIs.
To connect the online services with IFTTT, most of them
require the user to log in with a registered account (step 1 in
Section 2.2). This process is in general an OAuth procedure,
in which the trigger-action service needs to be granted the
permissions to access the trigger and fire the action. All these
require much user interaction, and thus Ta1ru should be able
to recognize GUI items and simulate responses to complete
it. This is addressed in Section 4.2.

o Challenge 2: Generating Valid Applets. The event con-
figuration (step 2 in Section 2.2) requires TAIFU to provide

Identifying Privacy Weaknesses from Multi-party Trigger-action Integration Platforms

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Phase 1

Cookies Phase 2

Connected Online Services

Service Authenticator

and Authorizer Applet Generator

Protocol

E

@:2

l®

Dynamic Protocol
> Generator and

= 5

Applet Executor and Behaviour Monitor

(

Executor

B N
Service Data Input Element Identifier
= and
Authenticatior/Autorizer

Stps Applets

TAIP Client - 1 . @
(= a=] [o } Instrumentator and E_ven(Config
= L Keﬁyﬁ:ffds J Protocol Extracter Data

c _ Yy,

E‘ Web Scraper

= Data

Applet Exe. Document @
History Monitor| | Comparator

I

Privacy Checker

lt

Privacy
Inferencer

Privacy
Checker

0

Privacy
Violations

Trigger
Simulator

Figure 2: Tarru Integration Testing Framework

several values. If invalid values are given, the applet would be
rejected straightaway by IFTTT, so Ta1ru should be “aware”
of the protocol format and meaningful values for event con-
figuration. A straightforward way might be to replay pre-
recorded requests, but to create unknown applets (so as to
trigger more data flows), TAIFU needs to automatically rec-
ognize the editable fields and feed them with valid values.
This is addressed in Section 4.3.

o Challenge 3: Monitoring Behaviors for Policy Decision.
While an applet is being executed (step 3 in Section 2.2),
TAIFU needs to collect information (e.g., data flows) to decide
privacy compliance. However, this is a non-trivial task, as the
involved parties usually do not provide explicit protocol to
fetch the status of the actions. This is addressed in Section 4.4.

As is illustrated in Figure 2, TAIFU is designed as a two-phase ap-
proach that consists of the generation of new applets and the exe-
cution of the generated applets. Below we brief each component in
these two phases and leave details to the remaining sections.
Phase 1: Applet Generation. This phase aims to generate applets.
It includes two components: the service authenticator and authorizer
and the applet generator. The former logs into the involved trigger
and action services, and authorizes the applet to access the trigger
and fire the action (detailed in Section 4.2). The latter extracts
possible protocol steps involved in generating an applet, and then
takes them as seeds to create new applets for each possible trigger-
action pair (detailed in Section 4.3).

Phase 2: Applet Execution and Privacy Analysis. This phase
executes the generated applets, and in the meantime, it identifies
privacy violations based on a set of privacy rules. It includes three
components: the applet executor, the behavior monitor and the pri-
vacy checker. The applet executor executes the applets by feeding
them with trigger events. Unlike a traditional fuzzer which mutates
all editable fields to generate as many test cases as possible, TAIFU’s
strategy is to mutate the privacy policy related fields such that the
triggered data flows may reveal privacy issues. The behavior moni-
tor extracts information (i.e., textual data and URLSs) for detecting
privacy issues. It involves the service authenticator and authorizer
to obtain session cookies and access tokens, so that TAIFU can access
data in each service (detailed in Section 4.4). The privacy checker
infers the policy enforced on the sensitive data from the execution
traces, and then checks the privacy violations (V1-V5) using a set
of pre-defined rules (detailed in Section 4.5).

4

Location

Service connected successfully!

Auto Connect Simple bonnect Auth Required

The pages on the top are the user interfaces displayed on IFTTT web client to connect online
services. After the connect button is clicked, the user is navigated to the pages listed at the
bottom. In our running example, both Facebook and Blogger services belong to the auth-required
connection category.

Figure 3: Examples: Three Types of Service Connection Procedures

4.2 Automated Login and Authorization

Ta1ru’s module of service authenticator and authorizer handles
the login and authorization processes (see challenge 1), and con-
nects the trigger and action services with the trigger-action service.
Although nearly all services follow the OAuth procedure, due to
the diversity of their implementations, the automation is a non-
trivial task. As a first step, we have performed a manual analysis of
randomly selected 30 online services compatible with IFTTT. We
examined their protocols based on the captured network traffic, and
identified three main types of OAuth procedures, i.e., auto-connect,
simply-connect, and auth-required, as is illustrated by the examples
in Figure 3. The auto-connect means no explicit actions are required
to connect, simply-connect means a single button click is needed
to connect, and auth-required means an authentication followed
by an authorization is required to connect.

Among these three, our effort is mostly spent on the simply-
connect and auth-required categories. Observing that web pages
(HTML documents) often use domain-specific keywords in the
attributes of HTML tags, we let TATFU exhaustively search for the
keywords in all attributes to identify tags of interest. In particular,
it uses an HTML parser to process each web page and search for
all tags that potentially involve user inputs or user interactions,
e.g., form, input, div, button and a. Its input element identifier
then queries our manually crafted corpus to identify the type of
each tag, i.e., username field, password field, navigation button,
sign-in button, or authorization button, based on its attributes, e.g.,
id, class, name, type, or placeholder. The input and div tags
are filtered to identify username or password fields; the div, a and

ISSTA °21, July 11-17, 2021, Virtual, Denmark Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhigiang Zuo, Dileepa Fernando, Zhenkai Liang, and Jin Song Dong

Table 2: The Protocol Steps

For all the protocol steps, the API is https://ifttt.com/api/v3/graph, the request type is POST and the header is "Authorization": "Token token=<token>,"Content-Type":"application/json; charset=utf-8’

Protocol Step Request Body

Get Trigger Configurations

"query": "query{\channel(module_name: <X>) {triggers {\id\name\description\full_module_name\trigger_fields }\}\}"}

Get Action Configurations

"query": "query{\channel(module_name: <Y>) {\actions{\id\name\description\full_module_name\action_fields \\\'}

Get Trigger Field Options

"query": "query{\trigger(module_name: <X>){trigger_fields{\name\options}}}"}

Get ActionField Options

"query": "query{\action(module_name: <Y>){action_fields{\name\options}}}"}

Get Trigger Ingredients

||| wf o] =

"query": "query{\action(module_name: <Y>{\defaults_for_trigger(trigger_module_name:<X>)"" \}trigger(module_name:<X>) {channel \name \ingredients }}"}

Send Event Configurations

"query”: "mutation{\statementPreview({trigger:<X>, action:<Y>, trigger_fields:<TRIGGER FIELDS>, action_fields: <ACTION FIELDS>}}{\normalized_applet \errors }}\'}

7 | Send Applet Creation

"query": "mutation {\diyAppletCreate(input:{\name: <APPLET TITLE>, \push_enabled: false,\channel_id:<TRIGGER CID>,\trigger: {\channel_id: <TRIGGER
CID>,\step_identifier: <X>, \fields: <TRIGGER FIELDS>}\\queries: , \actions:{\channel_id: <ACTION CID>,\step_identifier:<Y>, \fields: <ACTION FIELDS>}})
{\normalized_applet \applet_feedback_by_user\can_push_enable\published\archived\service_name\channels \underlying_applet}\errors {\attribute\message\}\}\"}

button tags are filtered to identify sign-in or authorization actions.
Once the correct tags are identified, TAIFU uses a web automation
tool called Selenium to automatically perform authentication, such
as filling in the test account information, and authorization, such
as clicking the authorization button.

4.3 Applet Generation

Given a pair of trigger and action events, the module of applet
generator creates an applet to incorporate them (see challenge 2).
The applet creation process involves much user interaction for
event configuration. It seems our approach of automating the login
and authorization process could be reused. Nevertheless, creating
an applet involves much more complex interfaces such as option
fields and text fields. They may have interdependence with each
other—for example, selecting one option may enable another, and
their values are less predictable than HTML tags. We therefore
use an alternative way of extracting the creation protocol from the
communication between the trigger-action client and its server, and
then utilizing it to create applets by concretizing the input fields.

4.3.1 Extracting Creation Protocols. We instrument the IFTTT An-
droid app to capture the communication traces (in terms of HTTP
requests and responses) between the app and the IFTTT server.
This is done based on the Xposed framework on a Samsung Galaxy
S4 device with custom Android Nougat. We instrument the Java
classes that are used by the IFTTT app for network communica-
tion (e.g., the okhttp library and com.ifttt.ifttt.graph.Query). With
the instrumentation, we manage to capture the traces for the ran-
domly selected 30 services. We then perform a differential analy-
sis [2, 33] on the traces to identify unique REST API calls. Each API
call includes an HTTP request-response pair that we refer to as a
protocol step in the rest of the paper.

In Table 2, we list the extracted protocol steps (responses are
omitted). Each protocol step includes constant parts (e.g., the re-
quest URL and the field names in the request body) and variable
parts (e.g., the input parameter and the field values). Column 3 lists
the variable parts of HTTP request body of each protocol step in <>
brackets. The rest of the HTTP request body are constants. Variable
Xin step 1 is the current trigger module name of the format <trigger
service>.<trigger> (e.g., facebook.new_photo_with_hashtag_by
_you), Y in step 2 is the current action module name (e.g., dropbox.
create_a_post), TRIGGER FIELDS in step 6 is the current trigger
configurations (e.g., { “hashtag”: “ifttt”}),and ACTION FIELDS
in step 6 is the current action configurations (e.g., { “title”: “post
title”, “body”: “post body”}). When TAIFU creates an applet,
the values for the variable parts of the protocol steps are dynami-
cally decided based on the chosen pair of trigger and action events.

[complete tigger fields Complete action fields

_—
Create trigger
e

Please select

Complete action fields I this ectivity 2 commute?

Please select

[p—————

Imagesource

Caption

Btion

Uplosdas by From <brs

CrastadAt

vis Facsbook Link

Create action

Create action
‘adirgredent

(b) (c)

(a) shows a trigger configuration which takes an option field. (b) shows an action configuration
which takes a text field. The default value in the field is an ingredient obtained from the trigger. (c)
shows the event configurations may take many input fields.

Figure 4: An Example of Event Configuration

Table 3: The Event Configuration Field Types

Field Type Field Type given by IFTTT
text_field, text_area, location_point, location_radius,
text field 3 . f " .
location_enter_and_exit, location_enter, location_exit
tion field collection_select, time_select, double_collection_select,
option fie checkbox_multi, minute_select, datetime_no_year_select

Table 4: Examples of Identified Clusters and Defined Values

Clusters Cleaned Input Field Labels Values
folder enter folder path, folder path, drive folder path | myfolder
duration cook time in minute, daily usage time exceeds 1,5, 10
keyword | word phrase, apply label, tag add “ifttt”

desc message, photo description, item description “event desc”
humidity humidity limit, humidity threshold, humidity 20, 40, 60, 80

url, description, option, time, keyword, percentage, temperature,
short description, phonenumber, folder, address, brightness, email,
duration, name, color,price, threshold, username, command, day,
code or token, expression, attachment, speed, query, position,
pressure, destination, humidity, number, value, id, location, date

All
Clusters

Some variables such as APPLET TITLE and TRIGGER CID in step
7 could be filled with a particular value in previous responses re-
ceived from the server. In contrast, others such as TRIGGER FIELDS
and ACTION FIELDS expect values that are erratic and specific to
trigger/action events. Next, we discuss how we handle them.

4.3.2 Constructing Configuration Data Corpus. Since the event
configurations are specific to the trigger/action events, we seek to
build a large-scale configure data corpus to accommodate them. We
first collect and analyze the event configurations from all events pro-
vided by all services that are supported by IFTTT. Our analysis finds

Identifying Privacy Weaknesses from Multi-party Trigger-action Integration Platforms

Table 5: TArrFu’s Mutations

Field Values

URL ImageURL, VideoURL, FileURL, PostURL, WebURL

Access Private Keywords: Only me, Personal, Private

Permissions Public Keywords: Anyone, Everyone, Public, Shared, Friends
File types photo, text, video

@ User Chosen/Decided @ From Data Corpus @ Ingredients @ From Previous Responses

Get Trigger Configuration (Protocol Step 1)
[Request: POST https://ifttt.com/api/v3/graph
Body: {"query": "query{\channel (module_name:facebook.new_photo_with_hashtag
[by you) {triggers{\id\name\description\full module_name\trigger _fields}
AR

Response: {"id" : "47", "name":"New photo with hashtag by you",
"full module name":"facebook.new photo with_hashtag by you",
"trigger_ fields":{"field name":"hashtag", "field ui_type": "text_field"}}

Get Action Configuration (Protocol Step 2)
[Request: POST https://ifttt.com/api/v3/graph
Body: {"query": "query{\channel (module_name: blogger.create_a post)
{triggers {\id\name\description\full module_name\trigger_ fields }\}\}"}
[Response: {"id" : "36996033", "name":"Create a Post", "full module name":
"blogger.create_a_post", "action_fields ":{{"field_name": "title",
"field ui_type": "text_field"}, {"field name": "body", "field ui_type":
"text_area"}}}

Get Trigger Ingredients (Protocol Step 5)
[Request: POST https://ifttt.com/api/v3/graph
Body: {"query": "query{\action (module_name: blogger.create_a_post
{\defaults_for_ trigger (trigger_module_name:facebook.new_photo_with hashtag
[by_you)"" \}) {channel \name \ingredients }}"}
[Response: {"title" : "{{CaptionNoHashtag}}", "body" : "<img src=\"
{{ImageSource}} \">
\n{{Caption}}
\nUploaded by {{From}} {{Link}}

\n{{CreatedAt}}"}

Send Event Configurations (Protocol Step 6)
t: POST https://ifttt.com/api/v3/graph
Body: { "query": "mutation{\statementPreview ({trigger:facebook.
inew_photo_with _hashtag by you, action:blogger.create a post,
trigger fields:{"hastag":"ifttt"},action_fields:{"title":{CaptionNoHashtag}
}", "body" : "
\n{{Caption}}
\nUploaded
by{{From}}{{Link}}
\n{{CreatedAt}}"}}) {\normalized_applet \errors }}\"}
[Response: {"applet_title": "If New photo post by Wijitha Rathna with
hashtag #ifttt, then create a post on your Blogger blog", "errors" : null}
Send Applet Creation (Protocol Step 7)

[Request: POST https://ifttt.com/api/v3/graph
{"query": "mutation {\diyAppletCreate (input:{\name: "If New photo post by
Wijitha Rathna with hashtag #ifttt, then create a post on your Blogger
blog",\push _enabled: false, \channel id: "47",\trigger: \channel id: "47" ,
\step_identifier: facebookAnew_photo:with_hashtag_by_you, \fields:
{"hastag":"ifttt"}}\, \queries: , \actions: {\channel_id: "36996033",
\step_identifier:blogger.create a post, \fields: {"title" : "{CaptionNo
Hashtag}}", "body" : "
 \n{{Caption}}
[
\nUploaded by {{From}} {{Link}}
\n{{CreatedAt}} "}}}) {\normalized
applet \applet_feedback_ by user\can_push_enable\published \archived
\service name\channels\underlying applet}\errors{\attribute\
message\}\}\}"}
[Response: "finish response" {"data" : {"diyAppletCreate"
{"normalized_applet" : {"id" : "gVuXjkJi","name" : "If New photo post by
Wijitha Rathna with hashtag #ifttt, then create a post on your Blogger
lblog", "author" : "bee0999", "status" "enabled_for_user", "created at" :
"2020-11-25 04:20:36 -0800", "archived" : false},"errors" : null}}}

Figure 5: The Protocol Steps for our Running Example

that out of the 4,433 events provided by IFTTT, 3,899 include event
configurations. They include thirteen types of input fields as shown
in Table 3. Among all events, 69.4% have collection_select type,
27.4% have text_field type, and the remaining 3.2% include other
eleven types. Since the option type and the text type are the vast
majority, we group all types into two categories, i.e., text fields and
option fields, as shown in Table 3. An option field (e.g., Figure 4.a)
has to be selected from a pre-defined list given by IFTTT, and a text
field (e.g., Figure 4.b) requires a string the user types in. An event
configuration may require either or both types of fields (Figure 4).

Providing a valid input for an option field is straightforward since
TAIFU can select an option from the received option list. In contrast,
providing a valid input to the text fields is challenging. Some text
fields expect ingredients (specified by IFTTT through their docu-
mentation [26]) that could be fetched from trigger data (discussed
in Section 4.3.3), while remaining ones require taking into consid-
eration the “semantic” information as they may take diverse types

ISSTA °21, July 11-17, 2021, Virtual, Denmark

"applet_id" : "gVuXjkJi",
"applet_title" : "If New photo post by Wijitha Rathna with hashtag
#ifttt, then create a post on your Blogger blog",
3 ". "trigger" : "new photo by you with hashtag",
" : "creat a post",

"action" :

{"hashtag" : "ifttt")i/ From Data Corpus

trigger_fields" : Ingredlents

“action_fields" : { "title" : "{{CaptionNoHashtag}}",
"body" : "
\n{{Caption

\nUploaded by {{Erom}} {{Link}}
\n{{CreatedAt}}"}

Figure 6: The Generated Applet in our Running Example

of values, e.g., filename, temperature and hours. As an example, the
trigger “temperature increased more than Celsius X" requires mean-
ingful input values—an integer of 0-35 for a room temperature, and
a string is likely to fail the input validation. To handle this, we resort
to natural language processing techniques. We crawl all the input
field labels (e.g., “Drive folder path”, “Which humidity threshold?”
and “What word or phrase?”) available in IFTTT, and uses the exist-
ing tools and techniques including RxNLP [19], k-means++ [1] and
word clustering to group similar labels. This gives us 35 clusters
including name, description, folder, color, duration, temperature,
brightness, etc. We then manually define the possible values for
each cluster. As a demonstration, Table 4 lists part of our clusters.

4.3.3 Generating Applets. With the extracted protocol steps and
configuration data corpus, TAIFU could proceed with generating ap-
plets. For each pair of trigger and action events, TAIFU first obtains
their event configuration requirements by executing the protocols
steps (1) and (2). If the trigger_fields and/or action_fields of
an event are empty, it does not require configurations; otherwise,
they specify the number of fields and field types for the event. Ac-
cordingly, Tarru fills in values for the fields based on their types (op-
tion fields or text fields). This involves the execution of the protocol
steps (3) and (4) when the field type is an option. If the field is a
text field, TAIFU queries the value from the corpus. Further, the
action_fields can be assigned with the trigger’s ingredients. To
this end, TAIFU uses the protocol step (5) to obtain the ingredients
and update the action configurations. Finally, TAIFU executes the
protocol steps (6) and (7) to verify the event configurations and
create the applet. Consequently, for all of the event pairs, TAIFU
generates and outputs a set of applets.

Figure 5 shows the executed protocol steps when creating the
applet in our running example. The protocol steps (3) and (4) are
not used, since all the fields are text fields in both of the trigger
and action configurations. The request body in step (6) includes
the event configurations for the applet. The trigger has only one
configuration field (hashtag). TAIFU has assigned the value “ifttt”
to it, since its label is classified into the cluster of keyword (row
4 in Table 4). The action has two text fields, and TAIFU assigns
trigger ingredients (CaptionNoHashtag, ImageSource, Caption,
From, Link and CreatedAt) to them. Figure 6 shows the generated
applet for our running example.

4.4 Applet Execution and Behavior Monitoring

Ta1ru’s module of applet executor executes the generated applets
to trigger privacy-related behaviors of each involved party, and the
behavior monitor records them for analysis.

4.4.1 Executing Generated Applets. To trigger the execution of an
applet, the trigger events need to be initiated at the trigger client.

ISSTA °21, July 11-17, 2021, Virtual, Denmark Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhigiang Zuo, Dileepa Fernando, Zhenkai Liang, and Jin Song Dong

We categorize trigger events into three types based on the extent of
user interaction, i.e., interaction events, IoT device events and public
events. The interaction events are generated by user interaction
with the trigger client (e.g., to upload a photo to social network, or
to turn on a smart bulb). The IoT device events are generated by
a physical IoT device without user’s control (e.g., the temperature
reaching a threshold). The public events occur at external parties
without involving the user (e.g., an article being published in a
news website and the weather forecast being updated).

We exclude the public events out of TAIFU’s testing, as they in-
volve only publicly accessible data and are irrelevant to the privacy
properties. Regarding the other two types, we attempt to generate
the events in a simulative way so that our testing process remains
automatic. To this end, we sniff the HTTP(S) requests sent by the
trigger client to the trigger service using our instrumentation infras-
tructure built for the creation protocol extraction (see Section 4.3.1).
We take these requests as the seeds and generate more requests via
mutation. They are then sent to the trigger service to simulate the
event occurrences. Our mutation is focused on the privacy config-
uration, among the meta data of the triggers such as imageURLs,
fileURLs, and webURLs. Table 5 summarizes the values used by
TA1FU’s mutation.

To execute the applet in our running example, TAIFU uploads a
new photo with hashtag ifttt at Facebook. Then TAIFU mutates
its privacy configurations (“only me" and “shared with group"), and
also its data type (e.g., to upload a video or text file instead of a
photo) to probe the behavior change in each party.

4.4.2 Monitoring Behaviors. While an applet is executed, informa-
tion related to the applet’s execution from the involved services,
such as policy alterations at each service and the data flow related
to the trigger event (as shown in Table 6), can be used to determine
privacy violations. Collecting such information from an online ser-
vice is a non-trivial task though (see challenge 3). To address this,
we resort to two sources, i.e, the web clients of online services and
the applet execution history from the IFTTT service.

First, we exploit the fact that the web clients always display the
latest updates or evidence of the latest actions. Hence, we build
a web scraper to crawl the web client of each involved service
to extract the affected data, including altered or newly inserted
HTML elements in the page resulted from the applet’s execution.
To achieve this, it requests cookies and access tokens from the au-
thenticator (step ® in Figure 2) to log into the web service, and
then crawls the web page twice, i.e., before and after the applet
is executed. TAIFU compares the two pages using the htmldiff li-
brary [12] to obtain the alterations. For scalability, the comparison
is based on the HTML tag attributes rather than words. In this way,
Tarru identifies the altered (mainly added or deleted) text and URLs.
As an example, the rows 2 and 3 of Table 6 show the text data (at
Column 4) and URL data (at Column 6) extracted from the web
clients for the applet in Figure 6.

The second source is the execution history, which is accessible
via REST API calls provided by IFTTT for its mobile client. After
initiating a trigger event, TAIFU keeps polling the APIs to find infor-
mation regarding the applet. Figure 7 shows the execution history
obtained by Ta1ru after the applet in our running example (see
Figure 6) is executed. From the history, TAIFU spots also the textual

"applet_id" : "gVuXjkJi",
"applet_status_data":{
"title":"Personal Recipe triggered","message":null,"error_code":null},
"trigger_data" : {
"content_text" : "You posted on Facebook \"#ifttt secret message\" — view photo",
"content_image_url" : "https://scontent-iad3-1.xx.fbcdn.net/v/t1.0-9/1279157..... SFE86B5C" ,
"content_icon":"check"}
"has_run_details":true
"location":"JMVhQmPywVdkV_HOPZBsgO6e7QbGNcoao...WN1w6i5u3rgAAAXHF TgnaAA=="

The applet execution history provided by the IFTTT service includes the textual content and
source URLS of trigger data received from the trigger service.

Figure 7: Applet Execution History of the Applet in Figure 6

data and URLs. The information extracted from Figure 7 is listed in
row 4 of Table 6.

4.5 Privacy Checking

TAIFU’s privacy checker applies a set of pre-defined rules on the
execution data to determine whether the applet execution violates
user privacy as defined in Section 3.3.

4.5.1 Inferring Access Control Policies. The violations V1 and V2
are spotted based on checking the actual access permissions against
the desired policies (discussed soon in Section 4.5.2). This thus re-
quires inferring the access control policies, as no participant in
real-world TAIPs publishes its policies. To fit into the traditional
access control model [38], we treat the monitored text and URL data
as the objects, and the data owner (i.e., user), the data controller (i.e.,
each party in the TAIP) and the external entities as the subjects.
We introduce continuousness to the privacy policy as the access
throughout the whole life cycle of an object, namely, creation and
deletion, should be considered. We take into consideration two pri-
vacy levels, i.e., private and public. With these elements defined, the
policies can be expressed in the access control policy matrix (ACM).

To find out the privacy level of the textual data, Ta1ru performs
a keyword search on the HTML tag attributes and text contents, for
indicators such as onlyme, private, everyone and public. When
there is no keyword found, TaI1ru assigns the default access per-
missions which are manually crafted by examining the policy of
each online service. To find out the privacy level of the URLs, TATFU
visits them without logging in with any account. If the URL does
not require authentication to view the content, TAIFvU infers its pri-
vacy as public and otherwise as private. For example, the Column
5 and Column 7 of Table 6 show the inferred privacy levels of the
textual and URL data related to the execution of the applet of our
running example (see Figure 6). Table 7 lists the policies inferred
by Ta1ru regarding our running example .

4.5.2 Checking for Violations. Among the five types of violations,
V4 is checked in the applet creation stage, by comparing the privacy
configuration options obtained from the event configuration inter-
face (e.g., the “keep private?” option in Figure 4.c) with those from
the trigger service and the action service. V5 is checked by compar-
ing the ingredients provided for the action configuration with the
trigger data extracted by the trigger-action service as recorded in
the execution log. For violations V1-V3 that involve the temporal
aspect of applets - after creation and deletion, we borrow the idea of
checking the temporal logic formulas. We use finite state machines
to specify the applet execution, so that pre-defined rules could be
applied for the checking. The state machine in Figure 8 is defined

Identifying Privacy Weaknesses from Multi-party Trigger-action Integration Platforms

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Table 6: Data Extracted by the Behavior Monitor and their Privacy as Inferred by TArru for the Applet in Figure 6

Moni faul . Infe L

or.ntored Example Default Extracted Textual Data Inferred Text Privacy | Extracted URL Data o .erred UR
Entity Pr. Level Privacy
Trigger . . private https://www.facebook.com/photo/?fbid=1348296398847094 .
Client Facebook | public #iftit secret message (keyword search) &set=a.171455689864510 private
Action . #ifttt secret message pubic . . et .
Client Blogger public Uploaded by Wijitha (default privacy) https://happybeeme94.blogspot.com/2020/11/secret-message.html public

You posted on Facebook .

E).(e' IFTTT private \"#ifttt secret message\" private https://scontent-iad3-1.xx.fbcdn.net/v/t1.0-9/1279157...&0e=5FE86B5C | public
History Feed — view photo (default privacy)

Table 7: Inferred Privacy Policies in Each Participant

The table shows the inferred privacy policies for the execution of the applet shown in Figure 6.
The dashes mean the data become unavailable once deleted.

Create (After the Object is Created at Trigger Service)

Trigger Service (Facebook) | IFTTT service | Action Service (Blogger)
text private private public
url private public public

Delete (After the Object is Deleted at the Trigger Service)

Trigger Service (Facebook) | IFTTT service | Action Service (Blogger)
text - private public
url - public public
al Q a2
Create b2
(o) (rowe)

(2

N

b1

any access operation
ally ateess operation

s = ACM1, s, s' 1= ACM1

[V1]
Vi <— True
any access operation
s =ACM2, s ————— > ¢/, s' 1= ACM2
[v2]

V2 <— True

State ACM1: after creating an object, the access permission matrix ACM1 is in effect. State ACM2:
after deleting an object, the access permission matrix ACM2 is in effect. Action al and a2 refer to
any action preserving the policy defined in ACM1 and ACM2, respectively, while action b1 and b2
refer to those violating policies.

Figure 8: The State Machine for Checking V1 and V2

simulate the defined trigger simulate any undefined
& applet executed trigger & applet executed
simulate the defined trigger &

applet executed ata floy
ccepte

simulate any undefined trigger &applet executed

simulated_event != defined_trigger, applet_exe_status = True

[v3]
V3 <— True

The sensitive trigger data may be sent to the trigger-action service by the trigger service, which
may further sends it to the action service. If a trigger event that is not the desired one by the
applet, the data flow is regarded as an unintended data flow.

Figure 9: State Transition Diagram of the User Expected Applet Ex-
ecution Behavior

for checking policy compliance related violations V1 and V2, and
that in Figure 9 is for checking data flow related violation V3. Based
on the state machines, TAIFU attempts to identify privacy violations
during testing, using the rules defined in Figure 8 and Figure 9.

Discussion. It is possible to detect V1 and V2 with a static approach,
for example, by a differential analysis on the access control policies
of each party. Nonetheless, the policies are mostly unavailable to
the analysts, so they may have to manually examine the applet

Table 8: Implementation Details

Component Libraries Used Lines of Code
Service Authen. and Author. | selenium, bs4, pymongo 1666
Applet Generator requests, json, pymongo 827
Applet Executor requests, json 451
Behavior Monitor selenium, scrapy, htmldiff, requests, pymongo 786
Privacy Checker requests, urllib, selenium, bs4, pymongo 770

creation and execution process to understand the implicit policies.
TAIFU’s dynamic approach attempts to automate this process, so
that the actual applet creation and execution could help identify
precise information to reduce false positives.

5 EVALUATION

We implement TATFU and evaluate it on IFTTT-based TAIPs. It is
implemented in Python, and Table 8 shows the implementation
details. TAIFU’s source code and our detailed experimental results
can be accessed online [41]. In the remaining of this section, we
present the evaluation on the performance of Tarru. We target to
answer the following three research questions.

e RQ1:Is TATFU accurate in detecting the five types of privacy
weakness?

e RQ2: Can Tarru effectively detect privacy weaknesses from
real-world (IFTTT-based) TAIPs?

e RQ3: To what extent can the TAIP testing process be auto-
mated?

5.1 RQ1: Accuracy Evaluation

Before conducting a large-scale testing, we first study the accuracy
of TAIFU in its detection tasks. The main challenge is that there is
a lack of available benchmark in the literature. We thus resort to
manual effort to construct one as the ground truth. To be represen-
tative, we select the most popular four trigger services including
Instagram, Facebook, Twitter, and Android Photos, and from each
of them, we select one trigger that involves sensitive information.
We then create applets to incorporate the four triggers with 36
popular action services, and manually check the violations. The
detailed configurations of these applets and the expected results
are given in our technical report [41]. In our manual investigation,
we find all types of violations except V3. This implies V3 may be
rare in the wild, and later our larger-scale experiments confirm this
finding (to discuss in Section 5.2).

We apply TAIFU to create and test the applets in our benchmark.
It manages to automatically create 127 applets and execute 116 of
them, as listed in Table 9. We leave the investigation of automa-
tion failure in RQ3, and focus on the detection performance here.
Table 10-12 list TA1FU’s detection results of each violation (except
V3). For V1 and V2 (Table 10), the detection through the IFTTT

ISSTA °21, July 11-17, 2021, Virtual, Denmark Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhigiang Zuo, Dileepa Fernando, Zhenkai Liang, and Jin Song Dong

Table 9: Applet Generation and Execution Results on Benchmark

I: Instagram; F: Facebook; T: Twitter; A: Android Photos

Type of Statistics 1 F T A Total
Attempts 36 36 35 36 143
‘gpplet tionl_Success 32 32 31 32 127
et Failed 7 7 7 7 16
Applet Success 29 30 28 29 116
Executions| Failed 3 2 3 3 11

auth-required

simple-
connect

auto-connect

The Type of OAuth Procedure

0 20 40 60

No of Connected Services

Figure 10: The Statistics of the Connected Services with IFTTT

service achieves the highest accuracy (100% as both precision and
recall). This could be attributed to the cleanness of the extracted
behavior data from the IFTTT execution history, which is in a well
structured JSON format. For the detection through the action ser-
vice, the recall rates are high, but the false positive rates are not
negligible. The imprecision is mainly caused by the noise in the
extracted behavior data from web clients, for example, the deviation
on advertisements when TAIFU refreshes the page. For both V4 (Ta-
ble 11) and V5 (Table 12), Ta1ru achieves a high precision (100% in
both) and recall (100% in V4 and 92.5% in V5).

Finding #1: The experiment on our benchmark shows that
TAIFU achieves a high detection rate for almost all types of
violations, so it is promising to be applied to real-world TAIPs.
Although a relatively high FP rate is acceptable for detection tool,
its false positive rate (~0.2) is not negligible, and confirmation
thus should be conducted when it is used in practice.

5.2 RQ2: Effectiveness of Applying TAIFU on
Real-world TAIPs

After the benchmarking, we apply TAIFU to more services. As of
October 2020, IFTTT supports 701 services of 46 categories (defined
by the IFTTT applet store). Since the account creation (for authen-
tication) requires non-trivial manual effort, we are not able to test
on all services. We therefore select the most popular ones based on
the applet installation count at the IFT'TT web client. We crawl the
applets with more than 1,000 installations, and then extract their
trigger and action services. Through this, we obtain 105 services
covering 39 of the 46 categories.

Ta1ru manages to connect all of the 105 services. Figure 10 shows
the amounts of each authentication type (cf. Section 4.2). Figure 11
shows the distribution of time taken for connecting a service with
IFTTT. On average, it takes 46.6 seconds to connect a service. A
vast majority (88 out of 105 services) take less than 100 seconds, and
those taking longer are due to additional authentication methods
like CAPTACHA are applied such that analyst interaction is needed.

1.0

0.8

0.6

0.4

0.2

Likelihood of Occurrence

0.0

50 100 150 200 250
Time for Connecting a Service (seconds)

Figure 11: The Time Taken for Connecting a Service with IFTTT.

Among the 105 services, only 33 have a web client, which is
essential for behavior monitoring (see Section 4.4.2). We add another
19 services that support only a mobile client to increase the number
of services to test, and in the experiments, we manually collect
their behavior data. We thus obtain 52 services. From them, TArrFu
successfully generates 407 applets within 25 minutes.

TAIFU manages to executes 283 out of the generated applets (fail-
ures to be discussed in RQ3). During the execution and behavior
monitoring, authentication with the action services takes similar
time to that in the connection, and the execution and behavior
data capturing take only a few seconds. Table 13 lists the detection
results. Among the 283 applets, 194 lead to V1 in 14 services, 90 V2
in 12 services, 15 V3 in 15 services, 218 V4 in 21 services, and 73
V5 in 19 services. Compared to other four types, V3 is rare in the
wild. This confirms our finding on the benchmark (see Section 5.1).
Our manual confirmation finds the 15 weaknesses of V3 are all true
alerts.

Finding #2: Tarru is able to effectively detect violations from
the real-world TAIPs within reasonable time periods. We also find
that in the IFTTT-based TAIPs, V1 and V4 are common among
services. V2 and V5 are less common, but access revocation and
least privilege enforcement are essential when sharing data with
third parties. V3 is relatively rare but still exists in some services
in real-world TAIPs.

Responsible disclosure. We have reported our findings to the
service providers including IFTTT and the third-party services.
Some of them, such as Facebook and Dropobx, have acknowledged
our reports. We also have kept our findings confidential for more
than 90 days before we reported them in this paper.

5.3 RQ3: Automation Failures

During our experiments, whenever there is any automation failure,
we resort to manual effort to explore the cause. In this section, we
report and discuss them. Through this, we aim to spot the sites for
future improvement, and also provide insights for future research
on automated testing in TAIPs.

Authentication and Authorization. TAIFU manages to identify
and provide credentials for all the web clients. Nevertheless, it some-
times encounters run-time exceptions (e.g., MoveTargetOutOfBoun-

Identifying Privacy Weaknesses from Multi-party Trigger-action Integration Platforms

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Table 10: The detection results of TAIFU on V1 and V2

The dashes (-) stand for not checked, since all the texts owned by IFTTT are not accessible by Tarru. TP: true positive, FP: false positive, TN: true negative, and FN: false negative.

Trigger Service - Trigger Access at IFTTT = Access at Action Service Access at IFTTT = Access at Action Service
TPT FP TNT FN | TP FP TN | EN TP | FP | TN | FN | TP FP TN | EN
1 | Instagram - Any new photo by you (we upload private photo) 5;; 28 ;) ;) ;] g ? 1(2’ ; URL | 28 0 0 0 3 2 5 1
o ke i e i 2 i i e Y P P O FR R A B
3 | Twitter - New tweet by you (we post private tweet) Ee};th ;) ;) 3 ;] g ‘lt 16 (1) URL | 0 0 28 0 0 0 5 0
4 | Android Photo - Any new photo by you (by default private) Ei(ﬁ ; 5 ;) (-) ;] Z T i (1)6 g URL | 29 0 0 0 11 0 5 4
Total et Lo o Lo H B B L2 TR (s [0 [28 [0 |15 |3 |34 |6
o i - e
Precision = p = TP/(TP+FP) -[r;{(lt 10;)% ggiiz URL 100% 83.33%
Recall = r = TP/(TP+EN) 53‘{ . géfzz URL 100% 71.42%
F-measure = 2pr/(p+r) 53; i gzgzé URL 1 0.7691

1 In our benchmark, all applets of a trigger service use the same trigger. Therefore, these applets are either positive or negative simultaneously.

Table 11: The detection results of TAIFU on V4

I: Instagram; F: Facebook; T: Twitter; A: Android Photos

V4 Trigger Service of the Applets
Violted? [T [F [T k| Overal
Yes @l TPs) | 31 | 31 | 30 11 103
No (all TNs) 1 1 1 21 24
Total Applets | 32 | 32 | 31 32 127

Table 12: The detection results of TAIFU on V5

Trigger Service of Applet T TP Vs TN TN iﬁ:lz;:d
Instagram 16 0 13 0 29
Facebook 17 0 12 1 30
Twitter 0 0 28 0 28
Android Photos 4 0 23 2 29

Total 37 0 76 3 116

FP Rate 0%

Precision = p = TP/(TP+FP) 100%

Recall = r = TP/(TP+FN) 92.5%

F-measure = 2pr/(p+1) 0.96

sException in Selenium), due to CAPTCHA, additional fields in-
volved other than credentials (e.g., blog url), or multi-factor authen-
tication (e.g., a one-time password sent to email or mobile). TAIFU
requires human interaction to overcome them. Overall, 18.1% of the
services require manual effort, including 7.6% button clicks, 3.8%
CAPTCHA, 3.8% multi-factor authentication, and 2.9% additional
information to input (e.g., the serial number of an IoT device).
Applet Generation. Most failures in applet generation are caused
by incorrect event configurations, especially in those that require
text inputs. We find that they get incorrect values due to the mis-
classification in the clustering (i.e., imprecision in NLP) or the lack
of relevant values in the corpus (see Section 4.3). For example, when
clustering the field name “to” of the action Send an email, TAIFU
misclassifies it as a location and thus provides a physical address.
Because of such errors, IFTTT declines the generation request. If
such errors are not detected at generated time, they may lead to
run-time errors.

Applet Execution and Behavior Monitoring. The reasons for
failures in applet execution and behavior monitoring are shown in
Figure 12. Among those failed services, 6 have errors in their web

loT Device Require
(Available) 4.7%

loT
No Other Device Require

Requirements (But Unavailable)
76.7% \ 16.3%
Involve

Money 2.3%

Services with
Public Trigger
Data 31.3%

Login /Server
Error 6.0%

Figure 12: Summary of Failures in Applet Execution and Behavior
Monitoring for the 105 Services used in RQ2.

login page or server, 26 associate third-party events as triggers, 30
provide only mobile clients, 17 require IoT devices that are currently
unavailable, and 2 require premium accounts or involve payment
for the trigger.

6 THREATS TO TAIFU’S VALIDITY

Ta1ru focuses on the privacy issues arising when cross-party data
flows are pervasive in real-world TAIPs. To the best of our knowl-
edge, this is the first work that uses the applets as test cases to
explore the behaviors of the TAIP participants. However, current
work of TAIFU carries several limitations that could be addressed
in future work.

First, although our most effort has been put into automating the
testing process, there are still a few factors that may lead to au-
tomation failures, as we discuss in Section 5.3. Analyst interaction
sometimes is required to remove the hurdles like CAPTCHA in
the authentication, which are specifically deployed by the service
providers to obstruct robots. Some trigger events may be uncon-
trollable by the analysts, such that automatic testing would also
fail. Continuous improvement on our approach is hence needed to
enhance the automation. Second, TAIFU’s applet generation relies
on NLP and clustering techniques to produce “valid” configurations,
so that non-trivial test cases can be generated. As shown in Table 9,
there is still a failure rate around 10%. This may be because our
datasets and corpus are small-scale. A richer knowledge set could
be applied to improve this component. Third, TATIFU achieves a

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhigiang Zuo, Dileepa Fernando, Zhenkai Liang, and Jin Song Dong

Table 13: TA1FU’s Results on the 407 TAIPs

Columns 2-14 show the trigger service of all applets in the 407 TAIPs. The triggers selected from each trigger service are as follows.

Column 2: Wordpress - Any new post. Column 3: Android Photos - Any new photo. Column 4: Facebook - New photo post by you with hashtag. Column 5: Dropbox- New photo post by you. Column 6:
OneDrive - New photo in folder. Column 7: Fitbit - New weight logged. Column 8: Withings - Body Scale - New measurement. Column 9: Fitbit - Sleep duration below. Column 10: Google Sheets - New
spreadsheet added to folder. Column 11: Pinterest - You like a pin. Column 12: Foursquare - Any new check-in. Column 13: Instagram - Any new photo by you. Column 14: Twitter - Any new tweet.
The notation dash (-) is used to show that violations not checked when no applet is successfully executed.

Word- | Android | Face- | Drop- | One- - . o Google | Pint- | Four- Insta- . j
‘ press ‘ Photos book | box Drive Fitbitl | Withings | Fibit2 ‘ Sheets erest | square | gram Twitter Total
[Generated [] 31 [32 [32 [31 [32 [31 32 [31 [31 [32 [32 [32 [31 [[407 |
| Executed [| 28 [29 | 30 [28 [29 [0 29 [28 | 28 | o | o | 29 [28 [283 |
Vi 0 29 30 28 29 4 28 28 16 194
V2 0 29 30 0 0 0 0 0 - - 28 3 90
V3 0 0 0 0 15 0 0 0 - - 0 0 15
V4 0 11 31 30 31 12 12 30 - - 31 30 218
V5 0 4 17 15 9 0 0 12 16 0 73

high accuracy in privacy checking when IFTTT exposes behav-
ior data with a standard format. However, when the trigger and
action service providers are not willing to publish their policy en-
forced, TAIFU has to rely on the web page to extract information
for decision making. This may lead to inaccuracy (~0.2 as shown
in Table 10) and thus manual confirmation from the analyst may
be needed. Fourth, TAIFU targets five types of privacy weaknesses
identified by us. We acknowledge that the privacy weaknesses by a
TAIP may not be limited to these five types.

7 RELATED WORK

Tarrv is related to the security analysis and automatic testing of
IoT platforms. In this section, we summarize existing studies in
these two areas.

7.1 Security Analysis of IoT Platforms

TAIFU is not the first on the security and privacy of trigger-action
platform. Surbatovich et al. [40] have analyzed IFTTT applets by
labelling the events with secrecy and integrity attributes tracking
their propagation for conflicts. Bastys et al. [4] propose an informa-
tion flow tracking framework to detect malicious applets. Schuster
et al. [39] propose to control situational access when giving autho-
rization to a web service to access a resource. AutoTap [45] and
Bu et al [5] apply formal methods to detect violations in the sce-
narios that TAP programs are co-installed, which inspire Ta1ru’s
approach of privacy checking (cf. Section 4.5). In comparison with
these studies, TAIFU’s focus is on detecting violations against the
data access control policy in the cross-participant integrations.
Some studies also have been conducted to analyze security and
privacy of the application platforms (e.g., Microsoft Azure IoT Suite
and SmartThings) that connect smart devices and mobile apps for
easy control through either local area network or cloud. Fernandes
et al. [15] perform an empirical analysis of SmartThings, reveal-
ing platform design flaws. FlowFence [16] enforces user declared
data flow patterns on sensitive data of smart apps. ContexIoT [29]
provides control over sensitive actions by smart apps on IoT de-
vice. These solutions do not target to protect user privacy of in the
TAIPs where online services are integrated with a trigger-action
platform, and cross-participant data flows are involved. Several
studies [23, 42] have discussed on the unauthorized data access
in IoT application platforms. In TAIFU, we target the privacy is-
sues arising after the user has authorized service connections with
trigger-action service. It demonstrates that due to the weaknesses
in the cross-party integration, the user privacy may be violated.

Several other studies [6, 46] have proposed vulnerability identifi-
cation approaches through traffic and static code analysis. TAIFU’s
approach of creation protocol extraction and applet generation (cf.
Section 4.3) is inspired by them.

7.2 Testing of IoT Platforms

Celik et al. [7] propose a model checking tool for IoT apps (e.g.,
Smarthings smart apps) to verify safety and security properties.
TotGuard [9] tests the safety and security of the actions in IoT
environment at runtime. IoTFuzzer [10] discovers memory corrup-
tions in IoT devices by fuzzing through control app. In addition,
some studies [48, 49] propose to fuzz the online services to find
server-side vulnerabilities using their mobile client apps. TAIFU’s
approach of creation protocol extraction and applet generation (cf.
Section 4.3) is inspired by them. In a summary, there is lack of
work on privacy issues arising when multiple parties are integrated
through the TAIP. Further, the existing approaches are not directly
applicable. Hence, we propose TAIFU to address this gap.

8 CONCLUSION

TAIFU aims to automatically identify privacy weaknesses from the
TAIPs. It is based on the insight that the applets can be used as
test cases to test the TAIPs. To this end, TAIFU uses a two-phase
approach to automate the testing process. It generates applets for
407 IFTTT-based TAIPs by synthesizing the trigger/action types,
and manages to identify a large number of privacy violations. TATFU
offers a new perspective that programs can be used as test cases to
identify faults from their execution host. We remark that our work
is a preliminary work in this direction, and more future studies are
desirable to cope with the challenges we report. For example, the
TAIP is a blackbox to the analysts, so how to efficiently trigger the
functionalities and data flows needs further exploration.

ACKNOWLEDGMENTS

We thank our shepherd Tuba Yavuz and the anonymous reviewers
for their insightful comments to improve this manuscript. This work
is supported by the University of Queensland under the NSRSG
grant 4018264-617225 and the GSP Seed Funding, the National Nat-
ural Science Foundation of China (No.61802168), the Leading-edge
Technology Program of Jiangsu Natural Science Foundation (No.
BK20202001), and the National Research Foundation (NRF) of Sin-
gapore under its NSoE DeST-SCI programme (No. NSoE_DeST-
SCI2019-0006).

Identifying Privacy Weaknesses from Multi-party Trigger-action Integration Platforms

REFERENCES

(1]

[2

—

(1]

[12]

[13]

[14

[15]

[16

(17

[18

[19]

[20

[21]

[22

[23]

[24]

[25

David Arthur and Sergei Vassilvitskii. 2006. k-means++: The advantages of careful
seeding. Technical Report. Stanford.

Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan Venkatraman, Prateek
Saxena, Jun Sun, Yang Liu, and Jin Song Dong. 2013. AuthScan: Automatic
Extraction of Web Authentication Protocols from Implementations. In Network
and Distributed System Security Symposium (NDSS).

Musard Balliu, Iulia Bastys, and Andrei Sabelfeld. 2019. Securing IoT apps. IEEE
Security & Privacy 17, 5 (2019), 22-29.

Tulia Bastys, Musard Balliu, and Andrei Sabelfeld. 2018. If this then what? Con-
trolling flows in IoT apps. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS). 1102-1119.

Lei Bu, Wen Xiong, Chieh-Jan Mike Liang, Shi Han, Dongmei Zhang, Shan Lin,
and Xuandong Li. 2018. Systematically ensuring the confidence of real-time
home automation IoT systems. ACM Transactions on Cyber-Physical Systems 2, 3
(2018), 1-23.

Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A Selcuk Uluagac. 2018. Sensitive information tracking
in commodity IoT. In 27th USENIX Security Symposium (USENIX Security). 1687—
1704.

Z Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. SOTERIA: Automated
IoT safety and security analysis. In 2018 USENIX Annual Technical Conference
(USENIX ATC). 147-158.

Z Berkay Celik, Patrick McDaniel, Gang Tan, Leonardo Babun, and A Selcuk
Uluagac. 2019. Verifying internet of things safety and security in physical spaces.
IEEE Security & Privacy (IEEE S&P) 17, 5 (2019), 30-37.

Z Berkay Celik, Gang Tan, and Patrick McDaniel. 2019. IOTGUARD: Dynamic
Enforcement of Security and Safety Policy in Commodity IoT.. In Network and
Distributed Security Symposium (NDSS).

Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin, X
Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan Zhang. 2018.
Totfuzzer: Discovering memory corruptions in iot through app-based fuzzing. In
22nd Network and Distributed Security Symposium (NDSS).

James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 international symposium on
Software testing and analysis (ISSTA). ACM, 196-206.

HTML Diff. 2020. html-diff 0.3.0. Retrieved Decemeber 2, 2020 from https:
//pypi.org/project/html-diff/

Wenbo Ding and Hongxin Hu. 2018. On the safety of IoT device physical interac-
tion control. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS). 832-846.

Facebook. 2020. Facebook Data Policy. Retrieved Decemeber 2, 2020 from
https://www.facebook.com/policy.php

Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis
of emerging smart home applications. In IEEE Security & Privacy (IEEE S&P).
636-654.

Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. 2016. Flowfence: Practical data protection for emerg-
ing iot application frameworks. In 25th USENIX Security Symposium (USENIX
Security). 531-548.

Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. 2018. De-
centralized action integrity for trigger-action iot platforms. In 22nd Network and
Distributed Security Symposium (NDSS).

Farhaan Fowze, Dave Jing Tian, Grant Hernandez, Kevin Butler, and Tuba Yavuz.
2019. Proxray: Protocol model learning and guided firmware analysis. IEEE
Transactions on Software Engineering (TSE) (2019).

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. 2010. Opinosis: a graph-
based approach to abstractive summarization of highly redundant opinions. In
Proceedings of the 23rd international conference on computational linguistics (Coling
2010). Association for Computational Linguistics, 340-348.

GDPR. 2016. Art.5 GDPR. Retrieved May 10, 2021 from https://gdpr-info.eu/art-
5-gdpr

GDPR. 2016. General Data Protection Regulation. Retrieved Decemeber 2, 2020
from https://gdpr-info.eu/

Google. 2020. Google Play Policy Center. Retrieved May 10,
2021 from https://support.google.com/googleplay/android-developer/answer/
10144311?visit_id=637523214929913988-659406915&rd=1

Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Diirmuth, Ear-
lence Fernandes, and Blase Ur. 2018. Rethinking access control and authentication
for the home internet of things (iot). In 27th USENIX Security Symposium (USENIX
Security). 255-272.

Weijia He, Jesse Martinez, Roshni Padhi, Lefan Zhang, and Blase Ur. 2019. When
smart devices are stupid: negative experiences using home smart devices. In 2019
IEEE Security and Privacy Workshops (SPW). IEEE, 150-155.

IETF. 2020. OAuth 2.0 Token Revocation. Retrieved Decemeber 2, 2020 from
https://tools.ietf.org/html/rfc7009

w
=

[32

[33

[34

[35

[36

(37

~
o)

=
&

[47]

[49

ISSTA °21, July 11-17, 2021, Virtual, Denmark

IFTTT. 2020. Creating Applets.
platform.ifttt.com/docs/applets
IFTTT. 2020. IFTTT Website. Retrieved Decemeber 2, 2020 from https://ifttt.com/
IFTTT. 2020. The statistics of IFTTT. Retrieved Decemeber 2, 2020 from https:
//platform.ifttt.com/blog/implementing-the-right-connectivity-solution
Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
Z Morley Mao, and Atul Prakash. 2017. ContexIoT: Towards Providing Contextual
Integrity to Appified IoT Platforms. In 21st Network and Distributed Security
Symposium (NDSS).

Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
2011. Dta++: dynamic taint analysis with targeted control-flow propagation.. In
15th Network and Distributed Security Symposium (NDSS).

Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang, Shi Han, Bérje F Karlsson,
Dongmei Zhang, and Feng Zhao. 2016. Systematically debugging IoT control
system correctness for building automation. In Proceedings of the 3rd ACM Inter-
national Conference on Systems for Energy-Efficient Built Environments (BuildSys
2016). 133-142.

Zhen Ling, Junzhou Luo, Yiling Xu, Chao Gao, Kui Wu, and Xinwen Fu. 2017.
Security vulnerabilities of internet of things: A case study of the smart plug
system. IEEE Internet of Things Journal (IoT-J) 4, 6 (2017), 1899-1909.

Kulani Mahadewa, Kailong Wang, Guangdong Bai, Ling Shi, Yan Liu, Jin Song
Dong, and Zhenkai Liang. 2019. Scrutinizing Implementations of Smart Home
Integrations. IEEE Transactions on Software Engineering (TSE) (2019).

Kulani Tharaka Mahadewa, Kailong Wang, Guangdong Bai, Ling Shi, Jin Song
Dong, and Zhenkai Liang. 2018. HOMESCAN: Scrutinizing Implementations of
Smart Home Integrations. In 2018 23rd International Conference on Engineering of
Complex Computer Systems (ICECCS). IEEE, 21-30.

Microsoft. 2020. Microsoft Flow. Retrieved Decemeber 2, 2020 from https:
//flow.microsoft.com/en-us/

Dang Tu Nguyen, Chengyu Song, Zhiyun Qian, Srikanth V Krishnamurthy,
Edward JM Colbert, and Patrick McDaniel. 2018. IoTSan: Fortifying the safety
of IoT systems. In Proceedings of the 14th International Conference on emerging
Networking EXperiments and Technologies (CONEXT 2018). 191-203.

Sukhvir Notra, Muhammad Siddiqi, Hassan Habibi Gharakheili, Vijay Sivaraman,
and Roksana Boreli. 2014. An experimental study of security and privacy risks
with emerging household appliances. In 2014 IEEE conference on communications
and network security (CCS). IEEE, 79-84.

Ravi S Sandhu and Pierangela Samarati. 1994. Access control: principle and
practice. IEEE communications magazine 32, 9 (1994), 40-48.

Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2018. Situational Access Con-
trol in the Internet of Things. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 1056—-1073.

Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin
Jia. 2017. Some recipes can do more than spoil your appetite: Analyzing the
security and privacy risks of ifttt recipes. In Proceedings of the 26th International
Conference on World Wide Web (WWW). ACM, 1501-1510.

Taifu. 2020. Taifu Website. https://sites.google.com/view/taifu-demo

Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xianzheng Guo,
and Patrick Tague. 2017. Smartauth: User-centered authorization for the internet
of things. In 26th USENIX Security Symposium (USENIX Security). 361-378.

Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A Gunter. 2019.
Charting the Attack Surface of Trigger-Action IoT Platforms. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security (CCS).
1439-1453.

Zapier. 2020. Zapier Website. https://zapier.com/

Lefan Zhang, Weijia He, Jesse Martinez, Noah Brackenbury, Shan Lu, and Blase
Ur. 2019. AutoTap: synthesizing and repairing trigger-action programs using
LTL properties. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 281-291.

Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin
Zhu. 2018. HoMonit: Monitoring Smart Home Apps from Encrypted Traffic. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 1074-1088.

Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and
Yuqing Zhang. 2019. Discovering and understanding the security hazards in
the interactions between IoT devices, mobile apps, and clouds on smart home
platforms. In 28th USENIX Security Symposium (USENIX Security). 1133-1150.
Chaoshun Zuo, Wubing Wang, Zhiqiang Lin, and Rui Wang. 2016. Automatic
Forgery of Cryptographically Consistent Messages to Identify Security Vulnera-
bilities in Mobile Services.. In 20th Network and Distributed Security Symposium
(NDSS).

Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. 2017. Authscope: Towards
automatic discovery of vulnerable authorizations in online services. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM, 799-813.

Retrieved Decemeber 2, 2020 from https://

https://pypi.org/project/html-diff/
https://pypi.org/project/html-diff/
https://www.facebook.com/policy.php
https://gdpr-info.eu/art-5-gdpr
https://gdpr-info.eu/art-5-gdpr
https://gdpr-info.eu/
https://support.google.com/googleplay/android-developer/answer/10144311?visit_id=637523214929913988-659406915&rd=1
https://support.google.com/googleplay/android-developer/answer/10144311?visit_id=637523214929913988-659406915&rd=1
https://tools.ietf.org/html/rfc7009
https://platform.ifttt.com/docs/applets
https://platform.ifttt.com/docs/applets
https://ifttt.com/
https://platform.ifttt.com/blog/implementing-the-right-connectivity-solution
https://platform.ifttt.com/blog/implementing-the-right-connectivity-solution
https://flow.microsoft.com/en-us/
https://flow.microsoft.com/en-us/
https://sites.google.com/view/taifu-demo
https://zapier.com/

	Abstract
	1 Introduction
	2 Multi-party TAIPs and a Running Example
	2.1 Trigger-action Integration Platforms
	2.2 A Running Example

	3 Privacy Violations in TAIP
	3.1 Threat Model
	3.2 Sensitive Data
	3.3 Types of Privacy Violations

	4 Approach
	4.1 Challenges and Approach Overview
	4.2 Automated Login and Authorization
	4.3 Applet Generation
	4.4 Applet Execution and Behavior Monitoring
	4.5 Privacy Checking

	5 Evaluation
	5.1 RQ1: Accuracy Evaluation
	5.2 RQ2: Effectiveness of Applying Taifu on Real-world TAIPs
	5.3 RQ3: Automation Failures

	6 Threats to Taifu's Validity
	7 Related Work
	7.1 Security Analysis of IoT Platforms
	7.2 Testing of IoT Platforms

	8 Conclusion
	Acknowledgments
	References

