
A Comprehensive Study of Real-World Bugs
in Machine Learning Model Optimization

Hao Guan1,2, Ying Xiao2, Jiaying Li3, Yepang Liu2, Guangdong Bai1
1 The University of Queensland, Brisbane, Australia

2 Southern University of Science and Technology, Shenzhen, China
3 Microsoft Software Technology Center Asia, Beijing, China

{hao.guan, g.bai}@uq.edu.au, 12150075@mail.sustech.edu.cn, jiayingli@microsoft.com, liuyp1@sustech.edu.cn

Abstract—Due to the great advance in machine learning (ML)
techniques, numerous ML models are expanding their application
domains in recent years. To adapt for resource-constrained
platforms such as mobile and Internet of Things (IoT) devices,
pre-trained models are often processed to enhance their efficiency
and compactness, using optimization techniques such as pruning
and quantization. Similar to the optimization process in other
complex systems, e.g., program compilers and databases, opti-
mizations for ML models can contain bugs, leading to severe
consequences such as system crashes and financial loss. While
bugs in training, compiling and deployment stages have been ex-
tensively studied, there is still a lack of systematic understanding
and characterization of model optimization bugs (MOBs).

In this work, we conduct the first empirical study to identify
and characterize MOBs. We collect a comprehensive dataset
containing 371 MOBs from TensorFlow and PyTorch, the most
extensively used open-source ML frameworks, covering the entire
development time span of their optimizers (May 2019 to August
2022). We then investigate the collected bugs from various
perspectives, including their symptoms, root causes, life cycles,
detection and fixes. Our work unveils the status quo of MOBs
in the wild, and reveals their features on which future detection
techniques can be based. Our findings also serve as a warning to
the developers and the users of ML frameworks, and an appeal
to our research community to enact dedicated countermeasures.

Index Terms—Machine Learning, Model Optimization, Bugs

I. INTRODUCTION

In the last decade, machine learning (ML) techniques have
received much attention due to their exceptional performance
in solving complex problems. They have been applied to a
wide spectrum of domains, ranging from optical character
and speech recognition [1], [2] to medical diagnosis [3], [4]
and autonomous driving systems [5], which are deployed for
safety-critical tasks. With their popularization, the scenarios
of ML applications are also expanding. They no longer ex-
clusively run on servers with high computational power, but
also on various end devices where computation, storage and
energy are relatively limited, such as IoT, edge and mobile
devices [6], [7].

Deploying ML models on resource-constrained scenarios
may encounter challenges though. Contemporary ML models

Yepang Liu is affiliated with the Department of Computer Science and
Engineering and the Research Institute of Trustworthy Autonomous Systems.
Hao Guan is under the UQ-SUSTech Joint Program. The corresponding
authors are Yepang Liu and Guangdong Bai.

are typically trained with complex structures and a large num-
ber of numerical parameters to achieve favorable accuracy and
generalization performance. For example, many models for
complex tasks such as image processing and natural language
processing may contain millions of trainable parameters and
hundreds of network layers [8]. Such massive models can be
trained on high-performance servers, but often are not readily
deployable in production scenarios. They may not perform
well or even fail to work on certain deployed devices, as
revealed by recent studies [9], [10]. Moreover, when deploying
ML models, model consumers need to consider various factors
such as service latency and model updates, which are rarely
considered during the training phase. Therefore, ML models
usually need to be optimized in terms of compactness and
resource consumption, prior to their deployment.

Model optimization mainly tackles the challenges of the
complex structure of ML models and vast amounts of numer-
ical parameters. Various optimization techniques have been
proposed so far, and they can be grouped into two main
categories, i.e., pruning [11]–[14] and quantization [15]–[17].
Pruning-based approaches identify and zero out insignificant
parameters to reduce the model size, and quantization-based
approaches replace parameters of floating-point numbers with
lower precision representations to simplify computation. These
techniques have been incorporated by the popular ML frame-
works, such as TensorFlow [18] and PyTorch [19], and have
become the de facto pre-deployment model processors.

Similar to the optimization task in other software that
handles complex objects, such as in program compilers [20]–
[22] and databases [23], ML model optimization is an error-
prone process. It may mistakenly result in a defective model
that produces different outputs than the original model, con-
sumes excessive prediction time, or even crashes [9], [24]. To
generalize, we call these bugs that appear in the optimization
phase of ML frameworks model optimization bugs (MOBs).

Research efforts have been made to study the reliability of
ML frameworks. They mostly focus on the general program
bugs in the learning stage [25]–[29], the compiling stage [30]
and the deployment stage [9], [31], [32]. Nonetheless, MOBs
remain largely unstudied. Researchers have simply treated
the optimization as part of the model training or compiling
process, despite the great paradigm shifts. For example, the
compiling process aims to adapt a model for a particular



platform [30]. It keeps the model’s numerical and structural
details to preserve model fidelity. In contrast, the optimization
process has to manipulate the details of the model.

In this work, we conduct a comprehensive study to under-
stand MOBs. We aim to provide the developers and users
of ML frameworks with our findings and insights regarding
MOBs, to help them precisely and efficiently pinpoint, if
not completely avoid, such an otherwise overlooked category
of bugs. For our study, we have collected 371 real-world
MOBs from TensorFlow and PyTorch, the most popular ML
frameworks, covering every release of their optimizers from
May 2019 to August 2022. We review their bug reports,
source code, patches, and developer discussions, taking into
consideration multi-dimensional characteristics including their
prevalence, symptoms, distributions, and life cycle. We also
investigate the root causes of the collected MOBs, and sum-
marize the challenges to detect and fix them.
Key Findings. To the best of our knowledge, this is the
first study on characterizing MOBs. Our study unveils the
landscape of MOBs in popular ML frameworks. Below we
summarize our key findings, and we defer more details to
Section IV.
• Most MOBs are introduced with the new releases and

major revisions of model optimizers in ML frameworks.
They often have stayed in the codebases for a long time
before they are discovered and reported.

• MOBs often result in subtle and model optimization-
specific consequences such as output corruption and ac-
curacy degradation.

• MOBs have distinctive root causes from bugs in other
components of ML frameworks, such as mis-shaping,
missing support of types/operations and metadata errors,
due to the special operations in model optimization.

• Existing approaches are not effective in detecting MOBs
due to the complexity caused by hybrid programming
languages, diversified platforms, input data constraints, and
volatile inference results.

Contributions. This work makes three major contributions.
• We collect a MOB dataset from TensorFlow and PyTorch

and conduct the first systematic study on this previously
unstudied type of bugs in ML frameworks.

• We reveal the bug patterns of MOBs, and provide insights
into their bug-introducing stages, triggering, and oracles
to facilitate their detection and localization. Our study can
help researchers gain an in-depth understanding of MOBs,
and encourage them to enact dedicated countermeasures.

• To facilitate future research on MOBs, including their de-
tection and fixing, we make our dataset publicly available
at https://github.com/MOB2022/MOB-dataset.

II. ML MODEL OPTIMIZATION

This section introduces model optimization techniques (Sec-
tion II-A). We also present the general workflow of model opti-
mization, position it in the entire ML life cycle and distinguish
it from other procedures like model compiling (Section II-B).

Original
Model

Loaded 
Model

Processed
Model

Fine-tuned
Model

Optimized 
Model

Load Prune / Quantize Retrain (optional) Format

Fig. 1. The general workflow of model optimization

A. ML Model Optimization and Optimization Techniques

Model optimization. The ML models trained to solve real-
world complex tasks, especially the deep neural networks,
mostly consist of complex structures, and contain a great
number of numerical parameters. Using such models may
require extensive storage and computational resources, which
can easily go beyond the capacity of small devices. Opti-
mization procedures thus are often necessary for adapting the
pre-trained models to resource-constrained platforms. Besides
being shown beneficial in deploying ML models on resource-
restrained devices, model optimization has also demonstrated
its advantage in various scenarios, such as reducing latency and
cost for inference [11], [33], over-the-air model updates [33],
and hardware-specific optimization [34], [35].
Optimization Techniques. Various techniques [11], [15], [33]
have been proposed for model optimization. They could be
grouped in two genres, i.e., pruning-based optimization that
alters the network structure, and quantization-based optimiza-
tion that modifies the numerical parameters.
• Pruning generates sparse models where connections be-

tween operators (i.e., neural network layers) are pruned
by introducing zeros to the parameter tensors.

• Quantization represents the models with lower precision,
such as 8-bit integers as opposed to 32-bit floats, to
simplify computation when using the models.

Over the past few years, these optimization techniques have
become mature and effective. They have been realized in the
state-of-the-art ML frameworks, and become a de facto post-
training processing step. For instance, the official guide [33]
of TensorFlow introduces how to optimize ML models in the
TensorFlow format, and so do PyTorch documents [36], [37].

B. A General Workflow of Model Optimization

Current model optimization processes usually consist of
four stages and a typical workflow can be found in Figure 1.
• S1: Loading and format conversion. The optimizer loads

the original model and converts it into an intermediate
representation (IR) in a particular format fitting the opti-
mization algorithm. The layers may be annotated with the
requirements and configurations for quantization, which
can override the default behavior of the original layer.

• S2: Pruning/Quantization. This is the main step in model
optimization. The pruning or quantization operations are
applied to the IR to generate an optimized model.

• S3: Retraining or fine-tuning (optional). The optimized
model is fine-tuned or retrained with the original dataset.



This stage is optional, and it aims to ensure the merits of
the original model on accuracy are not optimized out.

• S4: Output formatting. This stage reformats the optimized
model from the IR to a model portable for subsequent
deployment. All annotations and pre-processing operations
should be recovered. Ideally, the optimization should be
transparent to the model consumption.

III. METHODOLOGY

In this section, we first present our data collection pro-
cess (Section III-A), and then discuss the methodology for
filtering and labeling MOBs (Sections III-B and III-C).

A. Data Collection

We first consider ML platforms from which we construct
our MOB dataset. Due to the great popularity of ML tech-
niques in recent years, dozens of frameworks have been de-
veloped and publicly released. Selecting representative frame-
works is crucial to justify our results and make them generalize
to other ML frameworks.

We start with the top-10 ML frameworks among data
scientists, according to their power scores [38] synthesized
from prevalence-indicating metrics such as usage survey,
community activity, and articles/books reference. This list
includes TensorFlow (with a power score of 97), Keras (52),
PyTorch (23), Caffe (17), Theano (12), MXNet (8), CNTK (5),
DeepLearning4j (4), Caffe2 (3), and Chainer (1). Among them,
we rule out those that are closed-source, inactively maintained,
inadequately documented or having a small number of issues,
as of July 31, 2022. This excludes the following ones.
• Caffe/Caffe2. It is excluded as its most recent commit was

in early 2020, and its latest stable version was released 5
years ago.

• Chainer. It has not been updated since the end of 2019,
and no optimization module is found in it.

• Theano. It is not under active maintenance. The most
recent commit was in Nov 2021. Its continued project,
aesara, is immature without pruning or quantization API.

• MXNet, CNTK and Deeplearning4j. As of July 2022, their
latest version is v1.7, v2.7 and v1.0.0-M2, respectively.
They only provide simple quantization [39]–[41], and none
of them provides any model pruning API.

This process leaves three winners, i.e. TensorFlow, Keras
and PyTorch, and we take them as the representatives of
modern ML frameworks. Regarding the actual projects (i.e.,
repositories), since Keras is built on top of TensorFlow2
and the latest optimization guide of TensorFlow recommends
using Keras APIs [42], we treat TensorFlow/Keras as one ML
platform in this study. Moreover, the optimization module of
TensorFlow resides in a separate repository tfmot and thus
it is also included in our study. Finally, we take PyTorch,
TensorFlow and tfmot as target projects. In Table I, we can see
all the projects are large-scale, with millions of lines of code,
more than 200,000 commits and more than 30,000 issues in
total.

TABLE I
THE STATISTICS OF PROJECTS COLLECTED FOR STUDYING MOBS

Project Name Stars Commits Lines of Code Files
Num

Issues
Num

PyTorch 54,700+ 44,566 1,846,722 8,971 24,9601

TensorFlow 164,000+ 126,552 3,300,942 16,263 6,162
tfmot2 1,213 726 30,985 291 103

1 We counted all issues because no bug label is provided.
2 Tfmot stands for tensorflow/model-optimization, the standalone project for
optimizations of TensorFlow/Keras models.

B. Issue Selection

For the selected projects, we leverage their issue tracking
systems to collect MOBs. Apparently, not all issues there are
related to ML model optimization, and some of them are
even not bug reports. Therefore, we take a two-step collection
procedure.
Step 1: Selection of MOB related issues. To collect the issues
on model optimization, we make use of keywords and labels
of each issue. We design several patterns with our desired
characteristics and feed them into the GitHub filtering APIs
to identify possible MOBs from the massive issues. These
patterns are listed in Table II, and they are based on the
following two types of rules (both need to be satisfied).
• Containing optimization techniques. For TensorFlow, we

use the label ModelOptimizationToolkit in the main repos-
itory. For PyTorch, we use the labels module: pruning and
oncall: quantization to filter the issues on pruning and
quantization, respectively. For tfmot, we select all issues,
since the whole repository is about model optimization.

• Containing bug-related labels. In TensorFlow, the issue
proposers are required to label a bug-related issue with the
bug label. In PyTorch, the maintainers label valid issues
with triaged and assign them to relevant developers.

Step 2: Filtering invalid issues. Inevitably, some invalid
issues will be accidentally collected in the first step. To filter
out such issues that are not qualified for our study, we look
into the issue content and apply five exclusion rules (listed in
Table III) based on the following principles.
• Closed without informative comments. These issues do

not contain sufficient information for our bug analysis.
• Not a bug. We exclude those standalone feature requests

that are not based on any submitted bugs, project man-
agement topics including unit tests or CI/CD, and general
questions or enquiries.

With this process, we have collected 371 MOBs, of which
141 are from TensorFlow and 230 are from PyTorch. These
bugs are dated from May 2019 to August 2022 and distributed
across every release of the optimization modules of each
framework. Since we have applied strict selection rules, most
of the collected bug reports are well-formed, with clear bug
descriptions and actionable code snippets.

C. MOB Labeling

We conduct a manual review on collected issues, focusing
on extracting two characteristics of the MOBs, i.e., symptoms



TABLE II
SELECTION PATTERNS AND RESULTS FOR MOB RELATED ISSUES

Repository Filter Count
pytorch/pytorch label:"module: pruning" label:triaged is:issue 15
pytorch/pytorch label:"oncall: quantization" label:triaged is:issue 321
tensorflow/tensorflow label:ModelOptimizationToolkit label:type:bug is:issue 32
tensorflow/model-optimization label:bug is:issue 127

TABLE III
FILTER PATTERNS AND RESULTS FOR INVALID ISSUES

Rule Count Rule Count
Feature request 31 Documentation 10
CI/CD testing 22 Question / enquiry 6
Closed with no comments 55

and root causes. Since our work is the first on MOB analysis,
there are no existing taxonomy criteria to follow. We thus
conduct an iterative labeling process based on the open coding
methodology [43] to produce a stable and comprehensive
taxonomy of the characteristics of MOBs. We explain the
labeling iterations below and defer the results to Section IV.
Iteration 1. We study each of the 371 MOBs, and summarize
their symptoms and root causes based on the code and
discussion in the issues. We take different strategies for issues
with and without a patch.
Issues with a patch. The code-level patch provides useful
information for us to understand the bug. So we extract the
characteristics of patched MOBs from the pull requests and
commits linked to the corresponding issues. For example, in
Tfmot #655, the pull request #607 is referred. We study from
the patch in #607 and learn that the problem is about the
condition check when modifying layers. Therefore the issue
is characterized as a layer operation problem. 115 of the MOBs
have a clear patch that exactly fixes the bug.
Issues without a patch. For unresolved issues, we first make
sure they are valid based on the rules in Section III-B. Then
we derive their characteristics by analyzing the following
information.
• Error messages in the call stacks. For example, the

description in Tfmot #367 contains the log of exceptions.
We can learn that there is ValueError caused by “Tensor
conversion requested dtype float32 for Tensor with dtype
float16”, which can be characterized as a type problem.

• Input and output from reproduction code. For example,
PyTorch #80501 has input with large integers, and the
output is different as the environment changes. The output
can become negative or exactly zero. So we can confidently
infer that the issue is about numerical problems.

• Comments from framework developers that can explain
the problem. For example, In PyTorch #76304, the de-
veloper replied that “The issue is that the quantized con-
volutions are expecting a symmetric padding”. Therefore,
we can characterize this issue as a missing supporting
problem, which fails to handle a special condition.

While studying the MOBs, we gradually formulate a tax-

onomy to fit the context of ML model optimization in the
following ways: 1) to create subcategories for the types that
are too general for MOBs, and 2) to remove the types that are
not relevant to MOBs. At the end of this iteration, we manage
to compose a preliminary result, which contains two parts: a
MOB-specific taxonomy of symptoms and root causes, and
the strategy we have adopted to understand the three factors
above to decide the category of a MOB.
Iteration 2. Another author is involved in the process of cross-
validating the categorization result. This author refers to the
preliminary result obtained in Iteration 1, and checks whether
the characteristics extracted from the issues conform to the la-
beling strategies in Section III-C. For the issues that this author
does not agree, the two authors discuss them and clarify the
criteria used in the strategies. With the updated understanding
of the strategies, the second author applies another round of
validation to check whether a new disagreement is introduced.
Several rounds of discussions have been conducted to reduce
the disagreements.
Iteration 3. After the calibration of the categorization, all
authors revisit each bug, and agree on every decision regarding
the symptom and root cause.

IV. RESULTS AND FINDINGS

This section presents our analysis of MOBs and main
findings. We investigate three research questions (RQs).

RQ1: What are the general characteristics of MOBs? This
RQ aims to understand the general characteristics of MOBs.
We reveal their symptoms, and also present the temporal
features of their life cycle, including their trends, time to
detection and time to fixing.

RQ2: What are the root causes of MOBs and how are they
specific to model optimization? This RQ aims to understand
why MOBs occur. We are interested in those atypical root
causes that are not captured by existing studies on the bugs of
other ML components or life cycle stages.

RQ3: What are main obstacles for detecting MOBs?
This RQ focuses on model optimization-specific obstacles that
cause challenges for MOB detection.

A. RQ1: General Characteristics of MOBs

We first summarize the characteristics of the MOBs in the
wild, focusing on their symptoms and life cycle.

1) Symptoms: MOBs exhibit four types of symptoms:
Sym1: Crash. The optimizer exits unexpectedly, and no model
is returned.



TABLE IV
THE DISTRIBUTION OF MOB SYMPTOMS

Framework Crash OC MAD POP UnDec Total
PyTorch 149 31 22 19 9 230

TensorFlow 82 34 15 4 6 141
Total 231 65 37 23 15 371

OC: Output Corruption MAD: Model Accuracy Degradation
POP: Poor Optimization Performance UnDec: Undecidable type

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul Jul

Date (in month)

1.0

1.2

1.4

1.6

1.8

M
ea

n n
um

be
r o

f n
ew

ly 
rep

ort
ed

 is
su

es

PyTorch
TensorFlow

v0.1

v1.3

v0.3
v0.4 v1.8

v0.7

v1.11

v1.12

Fig. 2. Trends of MOBs v.s. Versions of PyTorch and TensorFlow

Sym2: Output corruption. The optimizer outputs a malformed
model, which becomes incompatible with originally compati-
ble ML programs.
Sym3: Model accuracy degradation. The prediction accuracy
of the model after optimization drops severely.
Sym4: Poor optimization performance. The optimizer con-
sumes excessive computational resources (e.g., CPU and stor-
age) or takes abnormally long to complete.
Undecidable type. The symptom is not described clearly in
the issue, without the expected and actual behavior.

Table IV shows the distribution of the symptoms of our
studied MOBs. Crash (Sym1) is the most reported type; 61.3%
of MOBs in PyTorch and 65.7% in TensorFlow produce a
crash. This may be because this symptom is easily observable
by the developers and users. Apart from the crash, 31% of
MOBs in PyTorch and 23% in TensorFlow lead to output
corruption (Sym2). Most of them produce incorrect models
that lead to errors when their downstream consumers load
them. Therefore, they are also noticeable to users, and the
reported issues often contain detailed bug descriptions. The
remaining two types of symptoms (Sym3 and Sym4) are rare.
Only 2.5% in PyTorch and 2.2% in TensorFlow are related to
model accuracy degradation (Sym3), and the poor optimization
performance (Sym4) MOBs account for 5% in PyTorch and
2.2% in TensorFlow. A possible reason is that these two types
of symptoms are often subtle and users cannot confidently
determine whether the degradation and poor performance are
caused by bugs or other factors.

2) Life cycles: We investigate the temporal features of
MOBs, to reveal their life cycles from three aspects, trends
in the development process, time to detection, and time to fix.
Trends of MOBs. Figure 2 presents the time points when the
MOB-related issues are submitted on GitHub, and how their
fluctuation relates to the major changes in each framework.

[0,14] [15,30] [31,90] [91,180] [181,365] >365
Existing days

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
um

be
r o

f i
ss

ue
s

PyTorch
TensorFlow

[0,14] [15,30] [31,90] [91,180] [181,365] >365
Existing days

0

2

4

6

8

10

12

14

N
um

be
r o

f i
ss

ue
s

Crash
OC
MAD
POP

Fig. 3. Time to detection of MOBs grouped by frameworks and symptoms

For PyTorch, the first increase occurred in 2019 Q4, because
the v1.3 released on 11 Oct 2019 introduced the quantization
APIs for the first time. The next surge happened on 5 Mar
2021, when the v1.8 changed the signature of quantization
APIs, and the way of quantization for different layers, includ-
ing relu and sigmoid. The v1.11 released on 11 Mar 2022,
which introduced new quantization operations and pruning
strategies, also caused another significant increase.

A similar phenomenon is observed in TensorFlow. The
increases of MOB reports align to new versions and features
in the model optimization module of TensorFlow, including
v0.3 (initial release of the Keras quantization API), v0.4 (sup-
port more convolutional and dense layers that are commonly
used in Keras) and v0.7 (switch to new default wrapper).
Time period to detection. For each MOB, we figure out two
critical time points: (1) when the MOB is introduced and (2)
when it is reported in an issue. As there is no clear detection
time, we take the report time of a MOB as the estimated time
point of detection, on the assumption that developers/users
usually report new bugs shortly after they detect them. To
find the time point when the MOB is introduced, we study its
relevant pull request and/or commits that fix it. We then use git
blame to track the historical commits and locate the commit
that introduces the bug. We use the time of this commit to
indicate the time point of introduction.

We have found 115 MOBs with a clear fixing commit, and
found the time point of introduction for all of them. Figure 3
presents our results, with breakdowns in terms of frameworks
and symptoms. Most MOBs have been existing for a long time
(>30 days) until they are detected. Among them, the MOBs of
poor optimization performance (Sym4) generally take a longer
time (over 90 days and even 1 year) to be exposed.
Time to fix. We use the time of the pull request or commit that
fixes the MOB as the time point of fix, and use the time period
between it and the time point of detection to estimate the time
period to fix the MOB. Figure 4 shows the results. The time
period to fix turns out to be extreme for fixed and unresolved
MOBs. Most fixed MOBs take short time to be resolved, while
the unresolved issues are usually kept open for a long time.
We study the code and discussion in each issue to figure out
the reason for this difference. We find that the fixing of issues
depends on the difficulty level of reproduction, which can be
influenced by the following factors.
• Non-crashing bugs. Bugs of Sym2, Sym3 and Sym4 are



[0,14] [15,30] [31,90] [91,180] [181,365] >365
Fixing days

0

2

4

6

8

10

12

N
um

be
r o

f i
ss

ue
s

Crash
OC
MAD
POP

[0,14] [15,30] [31,90] [91,180] [181,365] >365
Open days

0

5

10

15

20

25

30

35

N
um

be
r o

f i
ss

ue
s

Crash
OC
MAD
POP

Fig. 4. Fixing status of MOBs grouped by symptoms

harder to reproduce than crash (Sym1), because the output
of ML programs is stochastic in nature.

• Complexity of models. Buggy functions for a single tensor
are more likely to be fixed, while the problematic opti-
mizations for a complete model is usually too complex to
address, requiring more efforts of developers.

Answer to RQ1: The reported MOBs mainly cause four
types of symptoms, including crash, output corruption,
accuracy degradation and poor performance, where crash
accounts for a majority. MOBs are mostly introduced
during the first introduction or the major updates on the
optimizers of the ML frameworks. Most MOBs are hidden
in the codebases for a long time (>90 days) before they
are discovered and reported.

B. RQ2: Root Causes of MOBs

In this section, we present the root causes of MOBs, and
discuss their uniqueness.

1) Root causes: Our labeling process (Section III-C) cate-
gorizes the root causes of MOBs into five different types. Be-
low, we provide their definitions, analyze their consequences,
and present typical MOBs as illustrative examples.
RC1: Wrong type (89). The MOBs are triggered when an
input of a wrong type is passed into the optimizer. Such a
case happens when an input model of unsupported format is
fed into the optimizer or a function makes wrong assumptions
of input parameter types, especially when the inputs are of
collection types. We observe 89 such cases.

Consequence. As shown in Figure 1, the model optimizer
first loads the input model and converts it to an intermediate
representation (IR). When the optimizer fails to support or
makes wrong assumptions on the format of the input model, an
exception of TypeError, AttributeError or ValueError could be
triggered, which may crash the program. This type of MOBs
can also occur when the optimizer processes the IR, which
may consist of various collections like lists or dictionaries,
but assumes all elements of the IR are of the same type.

Illustrative example. We show an MOB of tfmot
#753 in Figure 5. After S1 stage, the function
collect_prunable_layers aims to select layers for
pruning. However, the input model may contain a collection
of models (submodules) instead of layers. The original code
assumes that all elements are of the layer type and thus fails

Input model

Intermediate
collections

Submodels
Layers
Metadata

[Layer, Model, Layer, …]

[Layer, Model, Layer, …]

Get prunable layers
Unpack model and get 
the desired elements [Layer, Layer, Layer, …]

Get prunable layers
Return all elements of 
PruneLowMagnitude

Crash

OK

Buggy

Fixed

Flatten the layers

Compare & sort 
elements in the list

Fig. 5. Data/control flow diagram showing the MOB tfmot #753 and its fix

Program start
Original Dimensions

Bug: Downscale
once for both 

1D and 2D

2x Scaled Dimensions

Upscale twice
for 2D

Load the model

Prepare to quantize
(Upscale)

Apply the quantization

Cleanup
(Downscale)

Save the model

Program output
1x Scaled Dimensions

Running Steps Data Shape

(Should be original) 

Fig. 6. Data flow of PyTorch #59200

to handle such a case. Next, the output prunable layers are
passed to a sorting step, where comparisons among these
layers are performed. Since the comparisons between layers
and models are not implemented, this step can be invalid and
leads to a crash. To fix this issue, the developer has to add a
type check and process different types in separate branches.
RC2: Unexpected shapes (41). The optimizers operate fre-
quently on tensors. Improper transformations or implemen-
tations can easily produce malformed tensors of unexpected
shapes, which cannot be digested by further operations.

Consequence. Such a MOB often raises an exception of
IndexError, KeyError or AssertionError. This may cause the
program to crash or corrupt the output.

Illustrative example. Figure 6 demonstrates a typical exam-
ple of shape handling in PyTorch #59200. During batch nor-
malization, the optimizer needs to create two fake dimensions
for a 2D input and remove them after processing. However, the
original code of PyTorch only removes one, and as a result,
the structure of the layer breaks. With such layers, the further
computation could produce wrong results or cause a crash.
RC3: Missing supporting data types (31). The data struc-
tures used by the optimizers may contain various attributes.
The MOBs may appear when some attributes are handled
incorrectly, although the data type is claimed to be supported.

Consequence. The issue can occur in the I/O stage or the
processing stage. In the I/O stage, such an issue is triggered
by some controlling flags during the conversion step. In the
processing stage, such an issue is raised during computation,
since the precision is not supported and thus the operation
cannot be completed. Such MOBs usually cause exceptions
of TypeError or AttributeError.

Illustrative examples. Since PyTorch did not support some



Input model

Intermediate
collections

Look up configuration

Quantize configuration registry

- _no_quantize(layers.UpSampling2D),
+ _QuantizeInfo(layers.Upsampling2D, 
[], [], True),

Quantize 
Process OK

Fix: Found 
configuration

Before: 
No configuration 

Error
unsupported

Fig. 7. Diagram of tfmot #372

specific precision of floating points in its early versions,
several issues, such as #42351 and #32775, which are related
to FP16 types, were raised by users. To mitigate the problem,
a pull request #52612 is created to track the status of FP16
support.

For controlling flags related bugs, TFOpLambda is a spe-
cial logic layer with the following flag to guard metadata:
_preserve_input_structure_in_config. But, dur-
ing the quantization step, this flag prevents the adaption of
the format and leads to a TypeError exception. This is due to
unsupported handler for this type of layer (shown below in
Listing 1 and 2).

1 # Preserve all argument data structures
2 # when saving/loading a config
3 self._preserve_input_structure_in_config = True

Listing 1. Special Flag for the TFOPLambda Layer

1 if input_tensors in not None:
2 if not layer._preserve_input_structure_in_config:
3 input_tensors = (
4 # A necessary operation without which a
5 # type mismatching will occur later
6 ...
7 output_tensors = ...

Listing 2. Quantization code fails to handle special flag correctly

RC4: Missing supporting layer operations (109). During
model optimization, some layers might need special handling
mechanisms, which can be missed by the implementation.

Consequence. The program clearly reports unsupported
layers and raises a runtime exception.

Illustrative example. We take tfmot #372 as an illustrative
example. As shown in Figure 7, before quantizing a layer,
TensorFlow searches for its configuration. However, such
configurations might be undefined in the configuration registry,
which leads to an unsupported error. In fact, the compatibility
of all kinds of layers is not mentioned in the documentation.
As a result, there is little chance for the users to know that
their design of networks is not suitable for quantization until
they run the code. After the quantization of this type of layer
(i.e., Upsampling2D) is supported by the framework, the
configuration is added to the registry so that the program can
find it and apply further processes successfully.
RC5: Metadata conversion errors (22). MOBs can occur
when the optimizer loses or mistakenly changes the metadata
of the input model.

Consequence. Such an issue usually occurs when the ML
model is loaded or saved. For example, the names of original

Input model
Full copy of layers 

Name is missingComplete info

Layers with the name same

Wrong result or runtime error

Transform the layer

Retrieve the values in the layer

Make a copy of the layer

Return a new layer (name is discarded)

Select the layer with name

The layer selected may not be the desired one

Layers use default names

kernal:0, bias:0, …

Complete
info 

Fig. 8. Diagram of tfmot #317

0 10 20 30 40 50 60
Number of issues

RC1

RC2

RC3

RC4

RC5

Others

PyTorch
TensorFlow

0 20 40 60 80 100
Number of issues

RC1

RC2

RC3

RC4

RC5

Load
Prune / Quantize
Retrain
Format

Fig. 9. Root Cause Distribution among Optimization Bugs

model layers are not encoded and stored properly during S1
stage. As a result, in the S4 stage, the optimizer is not able
to recover and produce the correct name for the output, which
may cause the model to behave unexpectedly, because the
application may select the layers with their names. In addition,
some information of the layer is not changed after conversion.
For example, the name and shape of the original layers should
be encoded for the intermediate model. The encoded name is
important for quantization or pruning. The layers that are not
encoded correctly may cause crashes or produce wrong results.

Illustrative examples. Issue #889 in tfmot is a typical case
of data loss. In the code, the data type of the layer is assigned
manually by the developer. The conversion encodes the layer
name with the new data type and also decodes the name with
it. As a result, the output has a different layer from the input.

Issue #317 in tfmot shows an example of wrong metadata
conversion. The process is shown in Figure 8. The code aims to
encode the name of the weights in the layers. However, it fails
to handle the sub-classed layer. As a result, the weights from a
regular layer and sub-classed layer have the same name, which
will cause an error of duplicated keys, resulting in wrong
values of weights or exceptions.
Others. Besides the above five categories of MOBs, 12 cannot
be categorized into any category. Their root causes are diverse,
including legacy or opaque issues.

2) Statistics of root causes: We summarize the overall
statistics in Figure 9. Note that 45 MOBs are excluded from
this figure as their root causes cannot be determined due to
non-reproducible or unresolved issues. In general, the missing
supporting data types (RC3, 31) and layer operations (RC4,
109) are the major root causes of the MOBs. They account
for 49.3% in total. The wrong type (RC1, 89) is the second
common root cause. We also classify these root causes based
on the optimization stages (see Section II-B), and the statistics
are shown in Figure 9.



3) Comparison with other bugs in ML frameworks: MOBs
demonstrate their uniqueness compared with bugs in other
components or life cycle stages of modern ML frameworks.
The wrong type bugs are found to be the most frequent
bugs in other components [27], [30], [31], [44], [45], in-
cluding model compiling [30]. This may be because Python
uses a dynamic typing system, and its grammar offers much
flexibility. In fact, the problem can occur in most Python
programs, as it can be introduced by almost every part of
the code, such as the assignments of literal values, the orders
of arguments passed to methods, and the elements in a list
or dictionary. In contrast, MOBs are mostly caused by special
operations on models or development processes in the context
of model optimization. First, model optimization entails a
large number of operations that change data values and types.
For example, quantization changes a float to an integer of
quantized data type (e.g., quint8), which is different from
Python’s built-in integer type. This may cause the missing
supporting data types (RC3) and layers operations (RC4)
Second, model optimization changes the model structure by
pruning, and changes the metadata including layer type by
quantization. This may cause the unexpected shapes (RC2)
and metadata conversion error (RC5). Third, ML frameworks
evolve fast, and introduce various new layers and model types.
The optimization techniques may fail to keep the same pace,
causing the missing supporting data types (RC3) and layer
operations (RC4).

Answer to RQ2: Five main root causes of MOBs
are identified. The majority of MOBs arise with model
optimization-specific operations and processes distinctive
from other components of ML frameworks. This raises
the necessity of future studies specifically focusing on
MOBs to facilitate their detection and fixing.

C. RQ3: Challenges of MOB Detection

Our study in RQ1 (Section IV-A) reveals that more than
70% of patched MOBs take over three months to get discov-
ered and reported. Therefore, we investigate the reasons why
MOBs are hard to detect in this research question.

We review existing approaches to detecting bugs from ML
frameworks, and identify the factors their detection techniques
rely on, as summarized in Table V. We then assess the
feasibility to obtain them from model optimizers, and we have
figured out four obstacles listed in Table VI.

1) Obstacles: Below are the four identified obstacles.
Ob1: Hybrid programming languages. The model optimiz-
ers of TensorFlow and PyTorch are both implemented in a
hybrid way using C++ and Python.
Ob2: Diversified hardware and platforms. The data repre-
sentation, value ranges, and data operations may have huge
differences across hardware and platforms.
Ob3: Large input data with complex constraints. An ML
model typically consists of a huge amount of data, and many
constraints on the types and shapes should be satisfied.

TABLE V
EXISTING APPROACHES TO DETECTING BUGS IN ML FRAMEWORK

Approach Factors Techniques to obtain factors
Static F1: Call graph Abstract syntax tree [46]–[48]
analysis F2: Data abstraction Pointer analysis [46]

Tensor partitioning [47]
Suspect loss estimation [48]

Testing F3: Input generation Model-based [48]–[50]
F4: Test oracles Class-based distance [49]

Mean absolute deviation [49]
F5: Mutation strategies Genetic algorithms [50]

Gradient back-propagation [48]

TABLE VI
FACTORS THAT MAY BE IMPACTED BY OBSTACLES IN OPTIMIZERS

Obstacles Affected Factors # MOBs
Ob1: Hybrid PL F1: Call graph 20

F2: Data abstraction
Ob2: Hardware and platform F2: Data abstraction 12

F4: Test oracles
Ob3: Data constraints F3: Input generation 42

F5: Mutation strategies
Ob4: Volatile results F4: Test oracles 9

F5: Mutation strategies

Ob4: Volatility of ML models. The weight values and layer
structures of ML models are subtle and sensitive. Altering
them may cause significant changes in the model performance
like accuracy and fidelity.

2) Challenges for static analysis: Static techniques analyze
programs based on their control flow or data flow. Gathering
either type of information is non-trivial in model optimizers.
F1: Call graph construction. Call graph (CG) construction
is an essential and prerequisite step to conducting inter-
procedural static analysis. CG construction for hybrid pro-
grams remains challenging nowadays, despite some recent
advances [51]. Due to Ob1, it can be difficult to precisely
link the callee function on the C++ side to the call site
on the Python side, since identifying the calling relationship
may require non-static information, such as type and value
information of input parameters, as well as the configuration,
which is constructed dynamically by Python.

Illustrative examples. PyTorch #58055 is a concurrency
bug caused by a data race in the low-level C++ code. The
Python code invokes function quantize_per_tensor,
whose implementation is located at the C++ side. PyTorch run-
time identifies the actual callee function through an internal
module named torchgen, which dynamically addresses native
functions. Such dynamic behavior and internal mechanism
of run-time make existing static analyzers fail to extract the
precise calling relationship among code in different languages
and, as a result, hinder them from detecting this bug.
F2: Data abstraction. To analyze the data flow, static ana-
lyzers usually construct an abstract representation of the data
for their types and values. First, hybrid languages (Ob1) can
obstruct the process of data abstraction. Pointer analysis [46]
requires the information of all functions that reference the



data. The track of data in Python can easily get lost when
coming to C++. Diversified hardware and platforms (Ob2) also
affect the correctness of data abstraction. For example, tensor
partitioning [47] techniques are based on value analysis. How-
ever, possible values, especially integers, may be hardware-
or platform-dependent, which can be largely unknown during
static analysis. Existing studies listed in Table V do not
consider how the data is represented in native code, so they
may fail to detect cross-platform bugs in optimizers.

Illustrative examples. PyTorch #60077 is an integer over-
flow bug reproducible on ARM platforms. Yet, the code runs
correctly on x86 platforms. This is due to the width distinction
of integer variables between the two platforms. Specifically, an
integer occupies 64 bits on x86 while 32 bits on ARM, and
thus an input value of 232 will trigger a bug only on ARM
platforms.

3) Challenges for dynamic testing: Dynamic testing gen-
erates test cases to expose potential bugs. The test cases
generated by existing techniques may not be valid, or effective
in testing model optimizers.
F3: Input generation. Diverse test cases are necessary to
cover possible occasions and detect the ones that can cause a
bug. Existing techniques [50], [52] generate inputs by mutating
seed models. However, they cannot be directly applied to
expose MOBs in model optimizers. Due to Ob3, mutating
model layers is a non-trivial task. Model layers and weights
usually have a number of constraints, which are specified
explicitly or implicitly, to be satisfied. Even a tiny mistake
could invalidate the resulting ML model. Besides the internal
constraints imposed by a certain layer, mutation methods also
need to consider the layer’s external constraints posed by other
layers, thus complicating the whole mutation procedure.

Illustrative examples. The models reported in tfmot #753
and PyTorch #67030 contain a special type of layer called sub-
model, which is different from other layers in terms of layer
construction and usage. It requires the test generator to be
aware of such special layers and specific mutation operators
to transform them. Otherwise, the generated test cases will
always miss the layer and fail to detect its bug.

PyTorch #63234 and #63356 are bugs due to incorrect
handling of data binding between Python and C++. The test
cases for such MOBs are difficult to construct because the
data in Python are of dynamic types, and models contain
complex structures and attributes. Some attributes are stored in
a dictionary, and the possible keys and values are not defined
explicitly in the code.
F4: Test oracles. To test ML frameworks, existing dynamic
techniques need to construct test oracles. The bugs are exposed
by executing the frameworks and checking if some pre-defined
assertions are violated. Different from crashing bugs that can
be easily observed, non-crashing bugs are often neglected by
developers and users, as confirming them is a non-trivial task.
Towards this problem, an existing study [49] in detecting ML
framework bugs proposes to compare inference results. How-
ever, such a technique is not applicable in detecting MOBs
mainly because of Ob4. The output of model optimization

is another model whose structure and weights may greatly
differ from the input model. Ob2 is also a severe problem for
constructing test oracles, because the behaviors on different
platforms may be naturally different. So far, there exist no
effective criteria to facilitate validating such inconsistencies.

Illustrative examples. Tfmot #722, #450 and PyTorch
#29024 report bugs about the optimization results. However,
when users suspect the correctness of the optimizer, it is not
easy to provide solid evidence to support their arguments.
Sometimes the framework maintainers cannot even track the
issues, and as a result, these issues remain open as of March
2022. On the other hand, tfmot #599, #439 and PyTorch
#46180 present some goals that should be optimized, such as
the size and the prediction efficiency. These problems are also
hard to address, because the pre-set goals may not be reachable
at all. The developers and users had a long discussion and
finally agreed that these are non-bug issues. The unsatisfactory
outputs are due to the inherent limitation of the optimization
algorithm.

Tfmot #635 shows different behaviors on CPU and GPU,
where CPU returns 0 but GPU returns a tiny floating point
number. Similarly, Tfmot #771, PyTorch #58130, #41115 and
#36802 are all specific to CUDA GPU acceleration. These
cases are using different setups, including graphic card models,
CUDA driver versions and builds of frameworks. According to
the developers’ discussion, framework maintainers even cannot
reproduce the issues due to the lack of specific hardware.
F5: Mutation strategies. For dynamic testing, the mutation
strategies are applied to analyze the feedback of previous test
cases and guide the generation of new test cases. Existing
studies [48], [50] use search-based algorithms to guide the test
case generation and make the input more likely to trigger bugs.
For MOBs, such searching strategies may not be effective.

First, due to Ob3, the mutated variants generated by current
algorithms can be invalid. The algorithms are designed to
mainly mutate weights and external values. They do not
consider the constraints of layer structures. For valid variants
generated by such algorithms, the layer structures are often
not mutated sufficiently, so the variants are not effective to
expose MOBs. For the variants that mutate layer structures
significantly, very few of them are valid for testing.

Second, Ob4 makes it hard to calculate a target for guiding
the generation, because there are no suitable test oracles to
help judge whether a model optimizer behaves properly or
not. Current algorithms usually rely on the comparison of
inference results, invalid numbers (i.e., NaN, infinity) and
crashes. As discussed earlier, the comparison criteria for the
results of model optimizers are still missing. The quantization
technique of model optimization is involved with integers,
which has exclusive problems on overflow (PyTorch #60077),
but the current algorithms for invalid numbers mainly deal
with floating point numbers.

Answer to RQ3: Four model optimization-specific obsta-
cles can cause prominent challenges in detecting MOBs.



Existing approaches are either inapplicable because of the
hybrid programming languages and diversified platforms,
or ineffective because of complex data constraints and
volatile outputs.

V. DISCUSSION

A. Implications

Based on our bug characterization and the analysis of
challenges, we provide several suggestions for developers
and users, in order to help improve the model optimization
modules in ML frameworks.
Towards Correct Usage. Users should realize that the model
optimization modifies ML models in multiple aspects apart
from the weights. The modification of data type and layer
structure may influence the usage of optimized models, such
as the methods of saving and loading models.
Towards Rigorous Development. First, it is recommended
to introduce sufficient regression tests to validate the newly
supported layers or configurations before a new version is
released. Second, developers should pay attention to the side
effects of an optimization operation, and identify whether to
introduce, remove, or keep the metadata.
Towards Effective Detection. First, it is necessary to construct
a clear function mapping between the code in different pro-
gramming languages, so that static analysis tools can figure out
the low-level code in depth and find potential bugs. Second,
test cases for detecting MOBs should cover different kinds of
layers sufficiently.

B. Feedback from the Community

To validate our findings, we have submitted issue comments,
pull requests, and email surveys to the community. Some
of our analyses on the operation bugs are confirmed as a
worthwhile problem (e.g., tfmot #867). Our pull requests for
preventing shape errors in quantization are also accepted and
merged (e.g., pytorch #81547).

C. Limitations and Threats to Validity

Our study focuses on understanding the landscape of MOBs
in popular ML frameworks. To the best of our knowledge, this
is the first comprehensive study on MOBs. However, as the
first attempt in this area, our study has several limitations that
we target to address in our future work.

First, our study selects extensively used open-source ML
frameworks and collects MOBs from their code repositories.
Although the collected data are representative, there is a
chance that MOBs in other ML frameworks show different
characteristics. Second, as there is no existing study on MOBs,
we have to design our own selection criteria to identify MOBs.
Because the number of issues is huge, our current criteria
contain some strict conditions (e.g., issues should have specific
labels) to avoid retrieving too many invalid issues, but we may
miss real MOBs. In the future, researchers may further explore
how to formulate better criteria to collect MOBs. Third, we
have to resort to manual efforts to propose labels and patterns

for investigating MOB symptoms and root causes. This may
be unavoidable as the first study in this area. Although we
have checked our taxonomy across the authors based on the
open coding methodology to reduce random errors from one
person, biases or mistakes may still exist. Fourth, although our
data collection has covered the entire development process of
the model optimizers, the obtained dataset is still relatively
small. Future work could consider extending our dataset by
incorporating other data sources, such as the developer forums
of ML frameworks, and Q&A websites like StackOverflow.

D. Comparison with Optimization Step in Model Compiling

Deep learning model compiling has a step called optimiza-
tion [53], which is often confused with model optimization. It
is worth discussing the fundamental differences between these
two. We refer the reader to a recent empirical study [30] for
bugs in model compiling.

Targets. Model compiling mainly aims to compile a model
to be compatible with a particular platform, while model
optimization aims to optimize a model’s complexity and
performance. Model optimization has to alter the numerical
or structural details of models, so it is more subject to new
bugs like mis-shaping (RC3) and unsupported types (RC4).

Strategies. Model compiling typically adopts conservative
strategies, e.g., zero-dim-tensor elimination, to preserve the
model fidelity. Model optimization is more aggressive, e.g.,
manipulating non-zero parameters, so it is more likely to lead
to type and shape errors that rarely occur in model compiling.

VI. RELATED WORK

Our work explores one type of deep learning bugs, so we
present a review of existing work on deep learning bugs.
Bugs in deep learning frameworks. A line of research
focuses on the general software bugs in deep learning frame-
works. Jia et al. [44] analyze the symptoms and root causes
of 202 bugs in TensorFlow. Chen et al. [45] conduct a more
comprehensive study of the DL framework bugs in PyTorch,
MXNet and DL4J. They analyze the bugs with more aspects,
including the user-level APIs, graph-level implementation,
operation implementation, general utility and environment-
dependent processing.

In addition to the general bugs of deep learning programs,
many recent studies focus on specific types of bugs in deep
learning programs. Chen et al. [31] explore the faults when
deploying deep learning applications on mobile devices. Cao
et al. [54] present the characterization of performance bugs that
can slow down the execution of DL systems. Zhang et al. [47]
target the numerical bugs that occur in DL programs and
propose an approach of static analysis on tensor partitioning
and affine relation to detect them. Yan et al. [48] follow
this work and manage to expose the numerical bugs with
dynamic techniques, based on gradient back-propagation. Shen
et al. [30] conduct a study on the taxonomy of symptoms and
root causes of bugs in DL compilers, which converts the input
models into low-level programs for different hardware to run.



Bugs in use of deep learning frameworks. As deep learning
has been extensively used in various domains, some studies
explore the bugs in the software using deep learning frame-
works. Zhang et al. [27] mainly focus on the life cycle of a
TensorFlow-based software. They collect 175 real-world bugs
from GitHub and StackOverflow. By analyzing the symptoms
and root causes of these bugs, they reveal the challenges in
bug detection and localization. Humbatova et al. [25] expand
their study to Keras and PyTorch. They select 564 projects
that use the three frameworks and collect 375 bugs to study.
Their taxonomies are characterized by structured interviews
with researchers and practitioners, and this work confirms that
the bugs could be experienced in practice. Islam et al. [26]
further expand the study to Caffe and Theano. They analyze
970 collected bugs for the root causes, and reveal common
anti-patterns when using the frameworks.

VII. CONCLUSION

In this paper, we present the first systematic study of
machine learning model optimization bugs by analyzing 371
issues retrieved from the two most popular machine learning
frameworks on GitHub (i.e., TensorFlow and PyTorch). We
categorize these bugs based on their symptoms and root
causes, and summarize the challenges in detecting them. Based
on our findings, we also propose suggestions for practitioners
to help them detect and avoid model optimization bugs when
developing or maintaining machine learning frameworks.

ACKNOWLEDGMENT

We thank our anonymous reviewers for their constructive
comments and suggestions on the paper. This work is partially
supported by the National Key Research and Development
Program of China under Grant No. 2019YFE0198100 and the
National Natural Science Foundation of China under Grant
No. 61932021, and the University of Queensland under the
UQ NSRSG grant and the Global Strategy and Partnerships
Seed Funding.

REFERENCES

[1] M. Namysl and I. Konya, “Efficient, lexicon-free ocr using deep
learning,” in 2019 international conference on document analysis and
recognition (ICDAR). IEEE, 2019, pp. 295–301.

[2] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications: an
overview,” in 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, 2013, pp. 8599–8603.

[3] M. Bakator and D. Radosav, “Deep learning and medical diagnosis: A
review of literature,” Multimodal Technologies and Interaction, vol. 2,
no. 3, p. 47, 2018.

[4] G. Litjens, C. I. Sánchez, N. Timofeeva, M. Hermsen, I. Nagtegaal,
I. Kovacs, C. Hulsbergen-Van De Kaa, P. Bult, B. Van Ginneken, and
J. Van Der Laak, “Deep learning as a tool for increased accuracy and
efficiency of histopathological diagnosis,” Scientific reports, vol. 6, no. 1,
pp. 1–11, 2016.

[5] S. Ramos, S. Gehrig, P. Pinggera, U. Franke, and C. Rother, “Detecting
unexpected obstacles for self-driving cars: Fusing deep learning and
geometric modeling,” in 2017 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2017, pp. 1025–1032.

[6] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, T. Wang et al., “Tensorflow lite micro: Embedded
machine learning for tinyml systems,” Proceedings of Machine Learning
and Systems, vol. 3, pp. 800–811, 2021.

[7] X. Dai, I. Spasić, B. Meyer, S. Chapman, and F. Andres, “Machine
learning on mobile: An on-device inference app for skin cancer detec-
tion,” in 2019 Fourth International Conference on Fog and Mobile Edge
Computing (FMEC). IEEE, 2019, pp. 301–305.

[8] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable
effectiveness of data in deep learning era,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 843–
852.

[9] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “A comprehensive
study on challenges in deploying deep learning based software,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2020, pp. 750–762.

[10] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, and
X. Li, “An empirical study towards characterizing deep learning devel-
opment and deployment across different frameworks and platforms,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 810–822.

[11] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

[12] M. H. Meng, G. Bai, S. G. Teo, and J. S. Dong, “Supervised robustness-
preserving data-free neural network pruning,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.00783

[13] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning,” in Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 5687–5695.

[14] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 5058–
5066.

[15] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[16] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard,
“Adaptive quantization for deep neural network,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[17] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” in International Conference on Learning
Representations, 2018.

[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “{TensorFlow}: A system
for {Large-Scale} machine learning,” in 12th USENIX symposium on
operating systems design and implementation (OSDI 16), 2016, pp. 265–
283.

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems (NeurIPS), vol. 32, 2019.

[20] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” ACM Sigplan Notices, vol. 49, no. 6, pp. 216–226,
2014.

[21] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” ACM SIGPLAN Notices, vol. 50, no. 10,
pp. 386–399, 2015.

[22] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code mutation,”
in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
2016, pp. 849–863.

[23] M. Rigger and Z. Su, “Detecting optimization bugs in database engines
via non-optimizing reference engine construction,” in Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2020, pp. 1140–1152.

[24] GitHub.com, “Issues · tensorflow/model-optimization,” Mar 2022.
[Online]. Available: https://github.com/tensorflow/model-optimization/
issues/

[25] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella, “Taxonomy of real faults in deep learning systems,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (ICSE), 2020, p. 1110–1121.



[26] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive
study on deep learning bug characteristics,” in Proceedings of the 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2019, p. 510–520.

[27] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), 2018, pp. 129–140.

[28] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang, “An
empirical study on program failures of deep learning jobs,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, 2020, pp. 1159–1170.

[29] Y. Xiong, Y. Tian, Y. Liu, and S. Cheung, “Towards actionable
testing of deep learning models,” SCIENCE CHINA Information
Sciences, 2022. [Online]. Available: https://www.sciengine.com/SCIS/
doi/10.1007/s11432-022-3580-5

[30] Q. Shen, H. Ma, J. Chen, Y. Tian, S.-C. Cheung, and X. Chen, “A
comprehensive study of deep learning compiler bugs,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2021, pp. 968–980.

[31] Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H. Wang, and X. Liu, “An
empirical study on deployment faults of deep learning based mobile
applications,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 674–685.

[32] A. Makhshari and A. Mesbah, “Iot bugs and development challenges,”
in 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering (ICSE). IEEE, 2021, pp. 460–472.

[33] TensorFlow, “Tensorflow model optimization,” Mar 2022. [Online].
Available: https://www.tensorflow.org/model optimization/guide

[34] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for
machine learning: Challenges and opportunities,” in 2017 IEEE Custom
Integrated Circuits Conference (CICC). IEEE, 2017, pp. 1–8.

[35] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “Dlau: A scalable
deep learning accelerator unit on fpga,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 3, pp.
513–517, 2016.

[36] PyTorch, “Quantization,” 2019. [Online]. Available: https://pytorch.org/
docs/stable/quantization.html

[37] ——, “Pruning tutorial,” 2021. [Online]. Available: https://pytorch.org/
tutorials/intermediate/pruning tutorial.html

[38] J. Hale, “Deep learning framework power scores 2018,”
Nov 2018. [Online]. Available: https://www.kaggle.com/discdiver/
deep-learning-framework-power-scores-2018

[39] Microsoft, “Cntk network optimizations,” Jan 2018. [On-
line]. Available: https://github.com/microsoft/CNTK/blob/v2.7/Manual/
Manual How to use network optimizations.ipynb

[40] “Mxnet python api.” [Online]. Available: https://mxnet.apache.org/
versions/1.7/api/python/docs/api/

[41] “Eclipse deeplearning4j.” [Online]. Available: https://deeplearning4j.
konduit.ai/

[42] Keras, “Keras documentation: The keras ecosystem,” 2022. [Online].
Available: https://keras.io/getting started/ecosystem/

[43] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: a critical review and guidelines,” in Proceedings
of the 38th International Conference on Software Engineering (ICSE),
2016, pp. 120–131.

[44] L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “An empirical study
on bugs inside tensorflow,” in International Conference on Database
Systems for Advanced Applications. Springer, 2020, pp. 604–620.

[45] J. Chen, Y. Liang, Q. Shen, and J. Jiang, “Toward understanding deep
learning framework bugs,” arXiv preprint arXiv:2203.04026, 2022.

[46] J. Dolby, A. Shinnar, A. Allain, and J. Reinen, “Ariadne: Analysis for
machine learning programs,” in Proceedings of the 2nd ACM SIGPLAN
International Workshop on Machine Learning and Programming Lan-
guages, ser. MAPL 2018. Association for Computing Machinery, 2018,
p. 1–10.

[47] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.-C. Cheung, and T. Xie, “De-
tecting numerical bugs in neural network architectures,” in Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2020, pp. 826–837.

[48] M. Yan, J. Chen, X. Zhang, L. Tan, G. Wang, and Z. Wang, “Exposing
numerical bugs in deep learning via gradient back-propagation,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2021, pp. 627–638.

[49] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: cross-backend
validation to detect and localize bugs in deep learning libraries,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 1027–1038.

[50] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen, “Audee: Au-
tomated testing for deep learning frameworks,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2020, pp. 486–498.

[51] A. M. Bogar, D. M. Lyons, and D. Baird, “Lightweight call-
graph construction for multilingual software analysis,” arXiv preprint
arXiv:1808.01213, 2018.

[52] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning
library testing via effective model generation,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2020, p. 788–799.

[53] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan,
G. Yang, and D. Qian, “The deep learning compiler: A comprehensive
survey,” IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 3, pp. 708–727, 2021.

[54] J. Cao, B. Chen, C. Sun, L. Hu, and X. Peng, “Characterizing per-
formance bugs in deep learning systems,” CoRR, vol. abs/2112.01771,
2021. [Online]. Available: https://arxiv.org/abs/2112.01771


