
Formal Analysis of a Proof-of-Stake

Blockchain

Wai Yan M. M. Thin, Naipeng Dong, Guangdong Bai, Jin Song Dong

National University of Singapore

Griffith University

Dec 12, 2018

Outline

• Problem Statement

• Background

• Tendermint Consensus Algorithm

• Formal Analysis

• Conclusion

1

Problem Statement

•Consensus protocols and algorithms are being developed rapidly

•They are fundamental to the chains

•Formal analysis of these consensus protocols is necessary

2

Background

3

Background

•Blockchain – sequence of blocks

•Block – maintains the metadata (the hash value of itself, link to

the previous block, signatures) and payload

•Consensus algorithm – protocol used by the nodes in the network

to agree on a new block

4

Consensus Algorithms

Proof-of-work

- Nodes provide the proof by solving a mathematical problem (e.g. Bitcoin)

- Rewarded for performing an operation agreed by majority

- Not punished for performing a malicious operation

- E.g. Bitcoin

Proof-of-stake

- Nodes provide a stake for voting/validating a new block

- Stakes are slashed if a malicious activity is detected

- E.g. Ethereum’s Casper, Tendermint

Others: Delegated Proof-of-stake , Proof-of-burn …

5

Focus on Proof-of-stake

• Proof-of-work

- Scalability concerns

- Waste energy and resources (solving hash puzzles)

• Proof-of-stake

- Alternative to the wasteful proof-of-work

- More scalable and robust against certain attacks (E.g. 51% attack)

- Employed by popular blockchain systems - Peercoin, Ethereum’s
Casper, Tendermint (Cosmos)

6

Tendermint Consensus Algorithm

7

Tendermint Consensus Algorithm

• Proposals

- A new block must be proposed by the correct proposer at each
round, and gossiped to the other validators

• Votes

- Two phases of voting occur to ensure optimal Byzantine fault
tolerance: pre-vote and pre-commit

• Locks

- Prevent two different blocks to be committed at two different
rounds at the same height

8

Tendermint Consensus Algorithm

• Validators chosen in round-robin to become the proposer

• Proposer in charge of proposing a block for the current round

• Proposer/validators

- Receive proposal/votes from neighbours

- Validate the block in proposal/votes

- Post a bond transaction to vote

- Gossip the proposal/votes

9

Tendermint Consensus Algorithm

Propose Prevote Precommit Commit

NewHeight

proposal prevote ≥ 2/3

precommits

< 2/3

precommits ≥ 2/3 commits

wait for T duration new height and state

10

Tendermint Consensus Algorithm

Propose Prevote Precommit Commit

NewHeight

proposal prevote ≥ 2/3

precommits

< 2/3

precommits ≥ 2/3 commits

wait for T duration new height and state

11

Tendermint Consensus Algorithm: Propose

• Proposer broadcasts a proposal to its peers

• If the proposer has already locked on a block during the

Precommit of the previous round

- Propose the block

•Otherwise

- Create a new block

12

Tendermint Consensus Algorithm

Propose Prevote Precommit Commit

NewHeight

proposal prevote ≥ 2/3

precommits

< 2/3

precommits ≥ 2/3 commits

wait for T duration new height and state

13

Tendermint Consensus Algorithm: Prevote

• Each validator will vote for a block and gossip it to the

neighbours.

• The block to be included is chosen in the following order:

- A locked proposed block from prior rounds

- A valid acceptable block from the current proposal

- NIL if neither is available

14

Tendermint Consensus Algorithm

Propose Prevote Precommit Commit

NewHeight

proposal prevote ≥ 2/3

precommits

< 2/3

precommits ≥ 2/3 commits

wait for T duration new height and state

15

Tendermint Consensus Algorithm: Precommit (1/2)

• If validator has more than 2/3 of prevotes for an

acceptable block

- Releases the existing lock

- Locks onto this block

- Signs and broadcasts a precommit vote for this block

- Packages the prevotes for the locked block into a proof-of-lock

• Otherwise

- Neither signs nor locks on any block

16

Tendermint Consensus Algorithm: Precommit (2/2)

• If received more than 2/3 of precommits for a block

- Proceed to Commit phase for this round

• Otherwise

- Proceed to Propose phase for next round

17

Tendermint Consensus Algorithm

Propose Prevote Precommit Commit

NewHeight

proposal prevote ≥ 2/3

precommits

< 2/3

precommits ≥ 2/3 commits

wait for T duration new height and state

18

Tendermint Consensus Algorithm: Commit

• Receive the block from one of its peers

• Sign and broadcast a commit to other peers

• When > 2/3 commits of the block are received by the network

- Proceed to NewHeight

- Wait for a fixed duration to receive additional commits of the block

- Proceed to Propose

• At anytime during the protocol, if > 2/3 commits for a

particular block is received,

- Proceed to Commit
19

Modelling & Checking

20

Modelling & Checking

• Built using CSP# and verified using PAT model checker

• Two sets of verifications with 3 validators and 4 validators

• Assumptions

- All the nodes in the network are connected to each other

- Existing nodes will not leave the network and no new nodes will join the network

- All nodes have the same voting power/stake

- No network latency

21

Properties

1. Deadlockfree-ness (T1)

2. Ability to reach consensus (T2)

3. Immunity against block overwrites (A1)

4. Immunity against Invalid blocks (A2)

5. Immunity against Censorship attacks (A3)

- The network can reach consensus even with the absence of malicious nodes in
the voting process who refuse to broadcast or vote a valid block in order to
censor a particular content of the block or censor the node itself

22

Modelling

BlockChain() = (||x:{0..N-1} @ (Propose(x);

Prevote(x); Precommit(x); PreparePOL(x); Commit(x)));

NextRound();

where P ; Q → process P followed by process Q

P || Q → synchronous processes P and Q.

23

Attacker Models (1/3)

P0. BlockChain()

P1. BlockChainWithMinorityOverwrite()
SimulateMalicious(MINORITY, OVERWRITE_VOTING); BlockChain();

P2. BlockChainWithHalfOverwrite()

SimulateMalicious(HALF, OVERWRITE_VOTING); BlockChain();

P3. BlockChainWithMajorityOverwrite()

SimulateMalicious(MAJORITY, OVERWRITE_VOTING); BlockChain();

24

Attacker Models (2/3)

P4. BlockChainWithMinorityInvalid()

SimulateMalicious(MINORITY, INVALID_BLOCK_VOTING); BlockChain();

P5. BlockChainWithHalfInvalid()

SimulateMalicious(HALF, INVALID_BLOCK_VOTING); BlockChain();

P6. BlockChainWithMajorityInvalid()

SimulateMalicious(MAJORITY, INVALID_BLOCK_VOTING); BlockChain();

25

Attacker Models (3/3)

P7. BlockChainWithMinorityCensor()

SimulateMalicious(MINORITY, NO_VOTING); BlockChain();

P8. BlockChainWithHalfCensor()

SimulateMalicious(HALF, NO_VOTING); BlockChain();

P9. BlockChainWithMajorityCensor()

SimulateMalicious(MAJORITY, NO_VOTING); BlockChain();

26

Verification Results

27

T1 T2 A1 A2 A3

P0 BlockChain ✔️ ✔️ ✔️ ✔️ ✔️

P1 (overwrite ≤ 1/3) ✔️ ✔️ ✔️

P2 (1/3 < overwrite < 2/3) ✔️ ✘ ✔️

P3 (overwrite ≥ 2/3) ✔️ ✔️ ✘

P4 (invalid ≤ 1/3) ✔️ ✔️ ✔️

P5 (1/3 < invalid < 2/3) ✔️ ✘ ✔️

P6 (invalid ≥ 2/3) ✔️ ✘ ✔️

P7 (no_vote ≤ 1/3) ✔️ ✔️ ✔️

P8 (1/3 < no_vote < 2/3) ✔️ ✘ ✘

P9 (no_vote ≥ 2/3) ✔️ ✘ ✘

Deadlockfree-ness (T1)

Ability to reach consensus (T2)

Immunity against block overwrites (A1)

Immunity against Invalid blocks (A2)

Immunity against Censorship attacks (A3)

Benchmarks (1/3)

28

BlockChain MinorityForking HalfForking MajorityForking MinorityInvalid HalfInvalid MajorityInvalid MinorityCensor HalfCensor MajorityCensor

3 Validators 748 749 749 749 749 598 873

4 Validators 17,644 17,645 17,645 17,645 17,645 17,645 17,645 3,249 865 423

5 Validators 4,279,260 4,279,261 4,279,261 4,279,261 4,279,261 4,279,261 4,279,261 314,709 4,125 1,335

6 Validators

3 Validators 1,972 1,973 1,973 1,973 1,973 1,385 1,824

4 Validators 103,000 103,001 103,001 103,001 103,001 103,001 103,001 13,201 2,385 937

5 Validators 42,530,784 42,530,785 42,530,785 42,530,785 42,530,785 42,530,785 42,530,785 2,431,909 15,629 3,853

6 Validators

3 Validators 0.06 0.06 0.05 0.06 0.05 0.04 0.04

4 Validators 3.52 3.48 3.47 3.49 3.42 3.22 3.43 0.47 0.07 0.03

5 Validators 1486.10 1430.37 1454.97 1531.58 1638.59 1512.43 1504.90 89.90 0.52 0.11

6 Validators

3 Validators 138.99 144.44 138.95 143.75 142.66 138.22 140.59

4 Validators 146.39 143.03 145.44 146.81 143.69 140.24 144.29 140.67 140.60 137.79

5 Validators 624.86 109.29 116.63 166.40 460.14 84.17 77.92 121.55 14.52 14.95

6 Validators

Visited States

Transistions

Time Taken(s)

Memory Used (MB)

Deadlock-free

LEGEND

Property being verified

BlockChain Model

Verified TRUE

Verified FALSE

Verification Invalid

Verification not run due to state space complexity

Distribution of validators

Validators Minority Half Majority

3 1 - 2

4 1 2 3

5 1 3 4

6 2 3 4

Benchmarks (2/3)

29

LEGEND

Property being verified

BlockChain Model

Verified TRUE

Verified FALSE

Verification Invalid

Verification not run due to state space complexity

Distribution of validators

Validators Minority Half Majority

3 1 - 2

4 1 2 3

5 1 3 4

6 2 3 4

BlockChain MinorityForking HalfForking MajorityForking MinorityInvalid HalfInvalid MajorityInvalid MinorityCensor HalfCensor MajorityCensor

3 Validators 66 67 67 67 750 65 881

4 Validators 142 143 17,646 143 143 17,646 17,646 129 866 424

5 Validators 266 267 4,279,262 267 267 4,279,262 4,279,262 239 4,126 1,336

6 Validators 450 451 451 451 335 131,274 4,480

3 Validators 65 66 66 66 1,973 64 1,824

4 Validators 141 142 103,001 142 142 103,001 103,001 128 2,385 937

5 Validators 265 266 42,530,785 266 266 42,530,785 42,530,785 238 15,629 3,853

6 Validators 449 450 450 450 334 931,969 21,648

3 Validators 0.01 0.01 0.01 0.01 0.05 0.01 0.04

4 Validators 0.02 0.01 3.22 0.01 0.01 3.07 3.10 0.01 0.07 0.03

5 Validators 0.02 0.02 1573.97 0.02 0.02 1512.57 1583.24 0.01 0.58 0.12

6 Validators 0.05 0.03 0.04 0.03 0.02 39.78 0.81

3 Validators 138.11 138.19 138.22 138.18 143.05 137.98 140.71

4 Validators 141.89 142.06 140.86 142.20 142.04 139.22 140.36 140.86 140.79 137.71

5 Validators 12.30 12.59 1007.11 12.96 12.55 524.55 690.11 15.10 15.56 15.47

6 Validators 143.81 146.76 142.08 146.63 140.81 236.94 141.52

Consensus

Visited States

Transistions

Time Taken(s)

Memory Used (MB)

Benchmarks (3/3)

30

LEGEND

Property being verified

BlockChain Model

Verified TRUE

Verified FALSE

Verification Invalid

Verification not run due to state space complexity

Distribution of validators

Validators Minority Half Majority

3 1 - 2

4 1 2 3

5 1 3 4

6 2 3 4

BlockChain MinorityForking HalfForking MajorityForking

3 Validators 66 67 750

4 Validators 142 143 144 17,646

5 Validators 266 267 268 4,279,262

6 Validators 450 451

3 Validators 65 66 1,973

4 Validators 141 142 143 103,001

5 Validators 265 266 267 42,530,785

6 Validators 449 450

3 Validators 0.01 0.01 0.05

4 Validators 0.01 0.01 0.01 3.31

5 Validators 0.02 0.02 0.02 1618.90

6 Validators 0.03 0.03

3 Validators 138.12 138.18 139.91

4 Validators 141.90 142.07 142.16 141.01

5 Validators 12.29 12.58 12.80 492.65

6 Validators 146.06 146.71

Memory Used (MB)

Time Taken(s)

Transistions

Visited States

Forking Attack BlockChain MinorityInvalid HalfInvalid MajorityInvalid

3 Validators 68 69 69

4 Validators 143 144 144 144

5 Validators 267 268 268 268

6 Validators

3 Validators 67 68 68

4 Validators 142 143 143 143

5 Validators 266 267 267 267

6 Validators

3 Validators 0.01 0.01 0.00

4 Validators 0.01 0.02 0.01 0.01

5 Validators 0.02 0.02 0.02 0.02

6 Validators

3 Validators 138.13 138.21 138.22

4 Validators 141.91 142.05 142.14 142.10

5 Validators 12.34 12.59 12.79 12.68

6 Validators

Visited States

Transistions

Time Taken(s)

Memory Used (KB)

Invalid Block Insertion

Conclusions

• We made a preliminary step towards the formal verification of

consensus protocols

- We modelled the Tendermint consensus algorithm in CSP# with 10
models to simulate several attacks

- We verified five preliminary properties using PAT

• Additional measures are required to ensure the protocol can

withstand censorship attacks

• Models available at https://goo.gl/Jzym4B

https://goo.gl/Jzym4B

Future Works

• Automatic formal verification is limited in verifying

consensus protocols with larger numbers of nodes

• Current models and properties are restricted

• We are interested in

- Studying verification algorithms catered towards blockchains

- Modelling sophisticated attacks and verifying more complex

security properties

Thank you

33

